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Abstract

Dynamic motion plays a vital role in biological and technological domains, contributing to
animal survival, human well-being, and the practical viability of robotic systems. The quan-
tification of movements is crucial for both passive observation and active manipulation of
movements. For example, inertial sensor-based motion tracking allows to objectively assess
a patient’s rehabilitation progress, while exoskeletons can actively support the patient’s gait.

Despite the large number of different problems in motion analysis and control, the current
state of the art almost exclusively comprises methods that solve individual specific problems
and require considerable technical expertise to select and configure suitable methods. Meth-
ods for inertial sensor-based knee angle measurement, for example, differ fundamentally from
those for detecting movements of the shoulder joint or entire extremities. Furthermore, the pa-
rameterization of the algorithms usually depends on the sensor attachment or the movement
performed – similarly to the parameterization of an algorithm for controlling dynamic move-
ments of an exoskeleton or robot that requires precise identification of the system dynamics
model. Both for motion analysis and control, data-driven methods offer great potential for
reducing this complexity and effort. However, they usually require a large amount of experi-
mental data from real-world systems in order to achieve sufficient generalization capabilities
and robustness even beyond simulation environments.

This thesis proposes and validates a recurrent neural network-based approach, which en-
ables the efficient solution of motion analysis problems on the one hand and motion control
problems on the other, and provides easy-to-use plug-and-play solutions in the form of trained
recurrent neural networks. Due to extensive domain randomizations, the neural networks
trained on simulation data alone can be transferred to the real-world problem without addi-
tional data or adjustments. Training across very different simulation scenarios–including those
traditionally treated as separate problems–provides a single pluripotent solution that can be
used without problem-specific prior knowledge.

The approach is used and validated for state estimation tasks in inertial motion tracking
of kinematic chains, on the one hand, and for reference tracking control in unknown nonlin-
ear dynamics, on the other. The resulting solutions enable for the first time: 1) a data-driven
method for observability analysis of complex state estimation problems of inertial motion track-
ing; 2) an inertial motion tracking method, validated on a real system, that overcomes four
key challenges simultaneously and enables magnetometer-free inertial motion tracking with
a reduced number of sensors, with sensor-to-segment calibration capabilities and motion arti-
fact reduction; 3) a broadly applicable solution for inertial motion tracking that eliminates the
need to select specific methods by training a single, problem-agnostic recurrent neural network
that generalizes even over the morphology of the kinematic chain; 4) a data-efficient learning
control method that enables reference tracking in a system with unknown nonlinear dynam-
ics without expert knowledge and that is validated on a variety of simulated dynamics; 5) a
method that allows a pneumatically driven robotic arm to learn agile movements within a few
trials despite its inherent compliance, while effectively rejecting external disturbances.

The progress achieved makes inertial motion tracking less restrictive, enabling its use with-
out expert knowledge and beyond established applications. At the same time, they contribute
to the development of autonomous plug-and-play approaches for model- and prior-knowledge-
free motion learning in systems with unknown nonlinear dynamics, e.g., for self-calibrating,
inherently compliant robots or learning exoskeletons and neuroprostheses.
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Zusammenfassung

Dynamische Bewegungen spielen in biologischen und technischen Bereichen eine wichtige Rol-
le und tragen zum Überleben von Tieren, zum Wohlbefinden von Menschen und zur Praxi-
stauglichkeit von Robotersystemen bei. Die Quantifizierung von Bewegungen ist sowohl für
das passive Beobachten als auch für die aktive Beeinflussung der Bewegungen entscheidend. So
ermöglicht beispielsweise die Inertialsensor-basierte Bewegungserfassung die objektive Bewer-
tung des Rehabilitationsfortschritts einer Patientin, während geregelte Exoskelette den Gang
der Patientin aktiv unterstützen können.

Trotz der Vielzahl unterschiedlicher Problemstellungen in der Bewegungsanalyse und -
regelung, umfasst der derzeitige Stand der Technik nahezu ausschließlich Methoden, die ein-
zelne spezifische Probleme lösen und ein erhebliches technisches Fachwissen erfordern, ge-
eignete Methoden auszuwählen und zu konfigurieren. Methoden zur Inertialsensor-basierten
Kniewinkelmessung unterscheiden sich beispielsweise grundlegend von denen zur Erfassung
von Bewegungen des Schultergelenks oder ganzer Extremitäten. Ferner hängt die Parametrie-
rung der Algorithmen in der Regel von der Sensoranbringung oder der ausgeführten Bewegung
ab – ebenso wie die Parametrierung eines Algorithmus zur Regelung dynamischer Bewegun-
gen eines Exoskeletts oder Roboters vom präzise zu identifizierenden Modell der Systemdy-
namik abhängt. Sowohl für die Erfassung als auch für die Regelung von Bewegungen weisen
datengetriebene Methoden ein hohes Potenzial zur Verringerung dieser Komplexität und die-
ses Aufwands dar. Sie erfordern jedoch in der Regel eine große Menge experimenteller Daten
der realen Systeme, um eine ausreichende Generalisierungsfähigkeit und Robustheit auch über
Simulationsumgebungen hinaus zu erreichen.

In dieser Arbeit wird ein breit anwendbarer, auf rekurrenten neuronalen Netzen basieren-
der Ansatz vorgeschlagen und validiert, der die effiziente Lösung von Bewegungsschätzproble-
me einerseits und Bewegungsregelungsproblemen andererseits ermöglicht, und der einfach zu
verwendende Plug-and-Play-Lösungen in Form von trainierten rekurrenten neuronalen Net-
zen liefert. Dank umfangreicher Domänenrandomisierungen sind die allein auf Simulations-
daten trainierten neuronalen Netze ohne zusätzliche Daten oder Anpassungen auf das reale
System übertragbar. Das Training über sehr verschiedene Simulationsszenarien hinweg – ein-
schließlich solcher, welche traditionell als separate Probleme behandelt werden – liefert eine
einzige pluripotente Lösung, die ohne problemspezifisches Vorwissen eingesetzt werden kann.

Der Ansatz wird im Rahmen der Arbeit einerseits für Zustandsschätzungsaufgaben der
inertialen Bewegungserfassung kinematischer Ketten und andererseits zur Referenzfolgerege-
lung in unbekannten nichtlinearen Dynamiken eingesetzt und validiert. Die resultierenden
Lösungen ermöglichen erstmals: 1) eine datengetriebene Methode zur Beobachtbarkeitsanalyse
von komplexen Zustandsschätzproblemen der inertialen Bewegungserfassung; 2) eine Metho-
de zur inertialen Bewegungserfassung, validiert am realen System, die vier Schlüsselherausfor-
derungen gleichzeitig überwindet und magnetometerfreie inertiale Bewegungsverfolgung mit
einer reduzierten Anzahl von Sensoren, mit Sensor-zu-Segment-Kalibrierungsfähigkeiten und
Bewegungsartefaktreduktion ermöglicht; 3) eine breit anwendbare Lösung für die inertiale Be-
wegungsverfolgung, die die Auswahl spezifischer Methoden überflüssig macht, indem sie ein
einziges, problemagnostisches rekurrentes neuronales Netz trainiert, das auf einer neuartigen
Architektur basiert, die sogar über die Morphologie der kinematischen Kette generalisiert; 4)
eine dateneffiziente, lernende Regelungsmethode, die eine Referenzverfolgung in einem Sy-
stem mit unbekannter nichtlinearer Dynamik ohne Expertenwissen ermöglicht und die an
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viii Zusammenfassung

einer Vielzahl von simulierten Dynamiken validiert ist; 5) eine Methode, die es einem pneu-
matisch angetriebenen Roboterarmes ermöglicht, trotz seiner inhärenten Nachgiebigkeit agile
Bewegungen innerhalb weniger Versuche zu erlernen, während er externe Störungen wirksam
negiert.

Die erzielten Fortschritte machen die inertiale Bewegungserfassung weniger einschränkend,
wodurch deren Einsatz erstmals auch ohne Expertenwissen und über etablierte Anwendungs-
bereiche hinaus ermöglicht wird. Gleichzeitig liefern sie einen Beitrag zur Entwicklung von
autonomen Plug-and-Play-Ansätzen für das modell- und vorwissenfreie Bewegungslernen in
Systemen mit unbekannter nichtlinearer Dynamik, – bspw. für selbstkalibrierende inhärent
nachgiebige Roboter oder lernende Exoskelette und Neuroprothesen.
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Glossary

heading any orientation can be decomposed into heading and inclination, the heading angle
is the angle of rotation around the vertical direction such that the angle of the subsequent
inclination rotation is minimized. 20, 21, 23, 51

inclination the orientation of an object relative to the horizontal plane; it indicates how much
an object is tilted. 20

magnetometer-free magnetometer-free methods operate without the usage of the magnetome-
ter; in the context of inertial motion tracking also referred to as 6d (these methods use
only 3d accelerometer and 3d gyroscope) in contrast to 9D (+ 3d magnetometer). 20, 21,
23, 24, 39, 41, 48, 49, 51, 58–60

motion artifact the effect that nonrigidly-attached sensors measure different values compared
to rigidly-attached sensors if the system is in motion. 21, 22, 24, 25, 41, 49, 51, 58, 61

observability the ability to infer the complete internal state of a system from its external out-
puts over time, see Definition B.2. 18, 19, 24, 31, 32, 35, 41, 47, 48, 57, 59, 76

plug-and-play plug-and-play solutions do not require time investment or expertise by the
user, e.g., in the form of calibration or tuning. v, 3, 9, 11, 13, 14, 17, 18, 23, 25, 32–34, 36,
39, 40, 42, 43, 48, 53, 55, 57, 58, 61, 67

pluripotent a pluripotent method can be applied to more than one problem. x, 25, 34, 43, 48,
58

sensor-to-segment calibration the process of aligning the orientation and position of the iner-
tial sensors with the corresponding body segments they are intended to track. 21–23, 25,
58, 61

sparse sparse methods use a limited number of sensors to infer information about a system;
in the context of inertial motion tracking this refers to having less than one sensor per
segment. v, 21, 23, 31–33, 35, 41, 48, 49, 51, 53, 57–61
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Acronyms

Articulated Rigid Body System (arbs) a system that consists of interconnected rigid bodies
joined by movable joints, allowing complex, coordinated motion across multiple seg-
ments. 39, 42, 43, 55

Artificial Neural Network (ann) a type of artificial intelligence model that mimics the hu-
man brain to process data and create patterns for decision-making. 9–11, 13, 15, 16, 18,
24, 25, 28, 32–34, 36, 38, 41–43, 48, 49, 53, 56, 58–63, 67–69, 71, 72

Automatic Neural Ordinary Differential Equation Control (anodec) a learning control method
proposed in Bachhuber et al. (2023b). x, 32, 34, 35, 45, 46, 51–56, 59, 63

Connectivity Graph (cg) an undirected graph where the nodes represent the bodies that con-
stitute an articulated rigid-body system and the edges represent its joints. 43, 44

Degree of Freedom (dof) an independent way a system can move or be positioned. 4, 18, 39,
50, 53, 60, 75

Gated Recurrent Unit (gru) a type of recurrent neural network proposed in Cho et al. (2014).
41, 43, 44, 55, 71, 73

Inertial Measurement Unit (imu) a sensor that typically measures 3d angular velocity (gyrscope),
3d acceleration (acceleterometer), and 3dmagnetic field density (magnetometer). 12, 16–
25, 31, 33, 35, 39, 41–43, 48–51, 56–62, 75

Inertial Motion Tracking (imt) technology used to track the movement and pose of an artic-
ulated system using inertial sensors. x, 12–15, 19, 21, 23–25, 31–36, 39–43, 47–51, 53,
55–62

Inertial Orientation Estimation (ioe) a technique to estimate the orientation of a single iner-
tial sensor. 20, 21, 24

Iterative Learning Control (ilc) a control method where a system improves its performance
over repeated tasks by learning from past errors to refine future actions. 27, 28, 55

Kinematic Chain (kc) a series of rigid bodies connected by joints, enabling controlled motion
in mechanisms like robotic arms or skeletal structures. 17, 19, 21, 23–25, 31, 33–36, 41,
43, 44, 47–49, 51, 57–59

xv
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Linear Quadratic Regulator (lqr) an optimal control method that minimizes a cost function
for linear systems. 7, 9, 27, 28

Long Short Term Memory (lstm) a type of recurrent neural network proposed in Hochreiter
and Schmidhuber (1997). 55, 71, 73

Machine Learning (ml) a field where algorithms learn patterns from data to make predic-
tions or decisions without explicit programming. 10, 15, 20, 21, 24, 34, 48, 52

Markov Decision Process (mdp) a mathematical framework for modeling decision-making in
scenarios where outcomes are partly random and partly under the control of a decision-
maker. 27, 37, 38

Mean Absolute Error (mae) a scalar error metric. 33, 48–51, 58

Mean Squared Error (mse) a scalar error metric. 41, 72

Model Predictive Control (mpc) a control technique that optimizes future actions by predict-
ing system behavior over a finite horizon and updating decisions at each step based on
the latest information. 8, 27, 28

Multi Layer Perceptron (mlp) a type of artificial neural network composed of multiple layers
of interconnected neurons, often a building block for larger networks. 44, 46

Neural Ordinary Differential Equation (node) neural networks that model continuous-time
processes by learning dynamics from data, without requiring physical equations. 32, 45,
46, 55, 63, 68, 71, 72

One-Dimensional (1d) a space constrained to a single axis or coordinate. 22, 23, 25, 49, 50

Optical Motion Capture (omc) technology that tracks movement using cameras and markers.
x, 19, 27, 28, 49, 61

Optimal Control (oc) a mathematical approach to determine a control policy that minimizes
or maximizes a performance criterion for a dynamic system. 27, 28

Partially Observable Markov Decision Process (pomdp) an extension of Markov decision pro-
cesses where the agent cannot directly observe the underlying state of the environment.
27, 37–43, 45, 67

Pneumatic Artificial Muscle (pam) a flexible actuator that contracts when pressurized with
air, mimicking the function of natural muscles. 26, 52, 53, 59

Probabilistic Inference for Learning Control (pilco) a learning control method proposed in
Deisenroth and Rasmussen (2011). 27

Proportional, Integral, Differential (pid) a type of feedback controller. 5, 6, 20, 52, 54, 59,
60



Acronyms xvii

Random Chain Motion Generator (rcmg) a simulator of kinematic chains performing ran-
dom motion proposed in Bachhuber et al. (2022). 39, 41, 42, 55, 57–59

Recurrent Inertial Graph-based Estimator (ring) a network of message-passing rnns (Re-
current Neural Networks) that estimates state information from sensor data in an end-to-
end, decentralized manner; makes use of the structure of an articulated system. x, 33–36,
41–44, 48–51, 53, 55, 56, 58–62

Recurrent Neural Network (rnn) a class of artificial neural networks designed for sequential
data processing and learning dependencies over time. v, xvii, 3, 14, 15, 17, 18, 21, 28, 31,
32, 34, 35, 38–41, 43, 47, 48, 55–57, 59, 67–73

Recurrent Neural Network-based Observer (rnno) a recurrent neural network that estimates
state information from sensor data in an end-to-end, centralized manner; does not make
use of the structure of an articulated system. 31–33, 35, 41, 47–49, 53, 55–59

Reference Tracking (rt) the process of following a reference signal with minimal deviation.
5, 12–15, 25–28, 32, 34, 35, 40, 44–46, 51, 52, 54, 55, 57–59, 63

Reinforcement Learning (rl) a type of machine learning where an agent learns to make de-
cisions by receiving rewards or penalties for its actions, aiming to maximize cumulative
rewards over time.. 9, 11, 16, 18, 26–28, 38, 45

Robust IMU-based Attitude Neural Network (riann) an inertial orientation estimation method
proposed in Weber et al. (2021). 21, 24

Root Mean Squared Error (rmse) a scalar error metric. 32, 51–54

Six-Dimensional (6d) a space constrained to six axes or coordinates, in the context of inertial
motion tracking refers to magnetometer-free measurements, consisting only of gyroscope
and accelerometer. 18, 25, 42

Soft Robot (sr) a type of robot made from flexible, deformable materials, enabling safe, adap-
tive interactions with unpredictable environments and delicate objects. 12, 25, 26, 28, 29,
34, 35, 52, 55, 56, 59

State of the Art (sota) the most advanced and high-performing techniques, technologies, or
knowledge available in a particular field at a given time. 20, 49, 50, 58, 73

Three-Dimensional (3d) a space constrained to three axes or coordinates. 12, 18, 19, 21, 23,
25, 39, 42, 49

Two-Dimensional (2d) a space constrained to two axes or coordinates. 23, 25, 49

Versatile Quaternion-based inertial orientation estimation Filter (vqf) an inertial orientation
estimation method proposed in Laidig and Seel (2023). 20, 21
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Part I

Background





1
Introduction

“Research is about moving forward systematically from adequate known detail into the unknown.”
– Vannevar Bush, Head of the U.S. Office of Research during World War II

This thesis proposes and validates an rnn-based approach that uses simulation data to effi-
ciently solve the dual problem of motion analysis and control of a system in dynamic motion,
and that yields easy-to-use, plug-and-play solutions in the form of trained rnns. The thesis
begins with this introductory chapter, which motivates the research field of motion analysis
and control, then introduces classical, model-based, and data-driven solutions to the problem.
The chapter finishes by defining the aim of the thesis and outlining its content.

1.1 Motivation

Motion is essential. The world is filled with humans, animals, and robots that perform dy-
namic, agile motions (see Figure 1.1): Animals that hunt prey, humans who run and are phys-
ically active, and robots that serve our needs. Motion surrounds us everywhere. Animals rely
on dynamic motion because of evolutionary adaptation. If the cheetah can’t outrun the gazelle,
it will starve. For humans, dynamic motion is central to numerous everyday activities, such
as walking, running, grasping, or dynamic hand movements like writing. Similarly, dynamic
motion forms the basis for the capabilities and efficiency of robots that solve tasks, such as
object manipulation or agile locomotion. Agile motion is ubiquitous, and many technical or
biological entities rely on fast, dynamic motions.

Fundamentally, there are two different tasks that involve dynamic motions: motion anal-
ysis and motion control. On the one hand, we want to analyze and track the dynamic motion
itself to draw conclusions. For example, a marathon runner might want to track their train-
ing, or a doctor might want to quantify a patient’s rehabilitation progress. We are passively
observing the motion. On the other hand, we want to enable humans or robots to perform
dynamic motions so that they can efficiently perform real-world tasks. For example, we want
to use functional electrical stimulation to stimulate muscles so that disabled humans can move
again and regain their abilities, or we want to control the motor currents of a quadrotor to fly
high-speed maneuvers. Here, we are actively intervening to manipulate the motion.

3



4 1 Introduction

Figure 1.1: Examples of animals, humans, and robotic systems in dynamic motion: A
cheetah in full sprint, a woman while running, and a quadrotor flying. License Informa-
tion

To achieve both motion analysis and motion control, some form of sensing and actuation
is always required. Sensors capture the movement, typically in specific coordinates or measur-
able quantities, while actuators initiate and control the movement. Figure 1.2 illustrates this
duality. Motion control often builds on motion analysis. It involves either a learned signal pat-
tern triggering movement, known as feedforward control, or the use of real-time sensor data
to make quick adjustments to how the movement should unfold, known as feedback control.

Let us first delve into sensing. Various types of sensors capture movement, typically di-
rectly via encoders, or indirectly using camera-based systems or wearable inertial sensors, re-
sulting in a vast amount of detail to explore. Each set of sensors has strengths and weaknesses;
however, let’s streamline our discussion toward a key concept: motion refers to rigid bodies
changing their position and velocity relative to a reference frame, which well approximates the
motion of most systems in our world. Mathematically, this type of rigid-body movement can be
formalized by specifying the positions of all dofs (Degree of Freedoms), i.e., the coordinates of
all translational and rotational joints that connect all bodies1. These generalized coordinates,
together with their velocities, form the so-called state of the system, a fundamental property
that fully describes it. However, there is a challenge: while the full motion can be described
using these values, the measurable quantities provided by the sensors are typically differ-
ent from the latter key motion states, for example for optical or inertial measurements.
Thus, the motion states must be determined from the measured data. This can be achieved
with the use of state estimation, which involves algorithms that rely on sensor measurements
to determine state information of a given system. An algorithm for state estimation is called
a state estimator or observer if it is deterministic, and the Kalman filter is one well-known
example of a state estimator (Kalman, 1960b). Applications of state estimators are highly di-
verse. They are used for human motion analysis (Halilaj et al., 2018; López-Nava and Muñoz-
Meléndez, 2016), for foundational research in biomechanics (Wong et al., 2015), for healthcare
and rehabilitation purposes (Buke et al., 2015), for autonomous piloting (Macario Barros et al.,
2022), and for applied robotics (Barfoot, 2017; Novak and Riener, 2015).

1For systems capable of free motion in space, we employ the concept of a floating-base, which models a virtual
6D joint connecting reference frame and system. This joint permits unrestricted global translations and rotations.
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Figure 1.2: Motion
analysis uses state
estimation algorithms
to capture the motion,
e.g., as joint angles
q, from sensor data.
Motion control then
uses this information
to manipulate the
actuators to track a
planned reference
motion closely.

Similarly, there exist various forms of actuators and control strategies for creating the
functional dynamic motions required for locomotion–the ability to move from one place to
another–and other complex tasks. For these motions to be executed, the actuators must apply
the appropriate forces, torques, voltages, or muscle stimuli at the correct moment. The compu-
tation of actuator inputs often involves two steps. First, a desirable motion that accomplishes
the higher-level task must be identified and translated into a trajectory of reference states (e.g.,
joint angles of a robot arm) via motion planning. Second, the planned reference motion must
be realized. Thus, achieving a desired motion, typically involves methods from the fields
of motion planning and rt (Reference Tracking). Methods that enable rt compute the ac-
tuation (e.g., motor torques, muscle stimuli) such that the state tracks the desired reference,
and the system performs the motion. The pid (Proportional, Integral, Differential) controller
is one example of a commonly used method for enabling rt. These methods that enable rt
usually involve either feedforward or feedback controllers, or a combination of both. Feedfor-
ward control involves computing the required trajectory of actuation inputs that achieves the
planned reference motion, either iteratively or based on a predetermined model of the system,
without making real-time adjustments. In contrast, a feedback controller adjusts the actuation
inputs in real time based on the deviation between reference and actual motion. In both cases
of iterative feedforward or feedback control, the actual motion is estimated by motion analysis.

Consequently, the two tasks of motion analysis and control work together and influence
each other. State estimation involves reconstructing the state of a system from sensor data.
At the same time, control typically uses state information to influence its future behavior.
Together, they form a feedback loop where accurate state estimation enables precise control.
Moreover, the tasks of state estimation and control are connected not only because they often
operate in tandem, but also because they share symmetry in their underlying mathematical
structures. This duality implies that methods developed for one can often be adapted to the
other, despite their differing objectives; for instance, the Kalman filter for state estimation and
the lqr (Linear Quadratic Regulator) for control share similar mathematical foundations. This
interplay between state estimation and control underpins a wide range of applications. Exam-
ple applications involving motion control are search-and-recuse drone systems (Hanover et al.,
2024), lower extremity exoskeletons (Tijjani et al., 2022), and robotic surgery (Le et al., 2016).

In addition, motion analysis and control become particularly challenging when the motions
involved are highly dynamic. One key issue is that sensor sampling rates may limit the ability
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Figure 1.3: An arm robot (here: Universal Robot 10e) can perform slow, quasistatic mo-
tions and agile, dynamic motions. License Information

to reconstruct state signals accurately, as higher dynamics demand faster sampling rates to
accurately capture these rapid changes2. Unfortunately, sensors capable of high sampling rates
are often impractical due to cost and hardware constraints. Another significant challenge is
the increasing nonlinearity of system dynamics in such scenarios, which necessitates more
sophisticated models and robust methods capable of handling inaccuracies effectively. For
instance, methods that rely on linearizations of system dynamics face increased challenges
during fast motion, as the approximation error grows with an increasingly fast motion (see
Appendix B).

In summary, both tasks of motion analysis and motion control can use state estimators
and methods from control. Simultaneously, the breadth of applications shows the high rel-
evance of analyzing and controlling the motion of complex, real-world systems. Many prior
works achieve state estimation and control through expert tuning, model-based approaches, or
data-driven learning methods.

1.2 Model-based and Data-driven Solutions

“All models are wrong, but some are useful.”
– George Box, statistician and professor

Control theory studies the analysis and regulation of dynamical systems, aiming to understand
and influence their behavior over time. Conceptually, animals, humans, and robots can be mod-
eled as dynamical systems, and the cheetah, the woman, and the quadrotor of Figure 1.1 are

2For more information, refer to the Nyquist-Shannon sampling theorem (Shannon, 1949)
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examples thereof. A dynamical system is a system whose state evolves according to a set of
rules or equations, often influenced by both internal (the metabolic rate in animals or humans,
or the battery level in robots) and external factors (the environment temperature, surface ter-
rain conditions, or control inputs such as voltages). The state of a dynamical system refers to
a set of variables that fully describe the system’s current condition and allow us to predict its
future behavior, given the system’s dynamics, the set of rules or equations. For example, the
movement of a car on a road can be modeled as a dynamical system, where the car’s speed
and direction (the states) evolve based on the driver’s input and the road conditions (external
factors). A second example of a dynamical system is introduced in more detail in Example 1.1.

Example 1.1

The pendulum consists of a point-like mass m that is attached to a massless
and in-extensible string of length L and swings under the influence of grav-
ity g without any friction or air resistance. The state of a dynamical system
at time t is typically denoted by xt and is here given by xt = [θt ωt]

⊺ where
θt is the angle of the pendulum from the vertical at time t. Similarly, ωt is
the angular velocity of the pendulum.

m

L

θ

g

The dynamics of the system determine how the state variables change in response to internal
factors, and it describes the behavior of the system as it moves from one state (from xt) to the
next (to xt+1). Here, the dynamics of the pendulum can be easily derived in analytical form
and are given in discrete time by (using explicit Euler and a step size of ∆t)

θt+1 = θt + ωt∆t and ωt+1 = ωt − g

L
sin (θt)∆t. (1.1)

The dynamics of the pendulum are nonlinear due to the sine function. Finally, note that this
system has no actuation or control input. Such a system is called an autonomous system.

Loosely speaking, the control theory methods may be divided into model-based and
data-driven methods. Model-based methods may further be divided into classical control
methods that are primarily based on transfer functions and frequency domain methods, and
modern model-based methods. Classical control focuses on single-input, single-output sys-
tems and relies on linear system theory, simplifying controllers’ design and analysis. Control
engineers often use tools like Bode plots, Nyquist plots, and root locus diagrams to analyze
system stability and performance and to design controllers within this framework. A notable
example is the widely used pid controller, a cornerstone of classical control, valued for its sim-
plicity, effectiveness, and ease of implementation. However, classical control methods have sev-
eral limitations that have led to the development of modern model-based control approaches.
Classical control is primarily designed for single-input, single-output systems, assumes lin-
ear, time-invariant behavior, and lacks an inherent mechanism for achieving optimality. In
contrast, real-world applications frequently involve multi-input, multi-output systems that ex-
hibit time-variant and nonlinear behavior, where a systematic approach to achieve the best
possible performance based on specific criteria becomes essential.
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Example 1.2
Consider the woman running in Figure 1.1. A key area of biomechanics is concerned with

developing models of humans. The human skeleton itself can be approximated as a composi-
tion of connected rigid bodies (bones connected by joints), but with joints that are actuated by
nonrigid muscle tendons that apply torques through contraction upon nerve stimulation (see
Figure 1.4). A musculoskeletal model is a foundational component of biomechanical modeling,
that allows to simulate the motion of the skeleton as the muscle nerve stimuli are varied. One
of the most established human musculoskeletal model is Rajagopal et al. (2016), which mod-
els humans using 37 degrees of freedom and 80 muscle tendons. Assuming joint angles and
velocities, and muscle activation and excitation as state variables, then the system’s state x has
74 + 160 = 234 dimensions. The system input vector u consists of the 80 muscle stimuli values
(typically normalized). Depending on the available sensors, the system output vector y could
be, e.g., the joint angles or angular velocities.

Figure 1.4: Musculoskeletal
model of the lower body with
and without tendons. Devel-
oping biomechanical models
requires large amounts of expert
knowledge and time investment.
License Information

Modern model-based control relies on control-engineer-designed mathematical models,
often in the form of state-space models, that approximate the dynamics of real-world sys-
tems. State-space models are first-order differential equations, and eq. (1.1) can be interpreted
as a model for a real-world pendulum in state-space form.

Within modern model-based control, the subfield of optimal control uses system models to
derive a control law that minimizes a specific cost function, such as the deviation between the
reference and actual motion. A well-known example of optimal control is the lqr (Kalman,
1960a). Other fields, such as robust control and H-infinity control, utilize the system model
to design controllers that maintain performance and stability, even in the presence of model
uncertainties and external disturbances. mpc (Model Predictive Control) is another modern
model-based control method that computes control inputs by solving an optimization prob-
lem over a finite prediction horizon, using a dynamic model to predict system behavior and
minimize a predefined cost function. Central to model-based control, as the name suggests, is
an accurate model of the system’s dynamics to be controlled. Typically, the engineer models
the system and performs system identification to identify the model’s parameters as accurately
as possible.

However, this task is non-trivial, time-consuming, and can be especially challenging in
real-world, nonlinear, and time-varying systems. The model may be inaccurate, especially for
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complex systems, or may only remain accurate near the specific operating point for which it
was designed by the engineer. Consider Example 1.3, the Kalman filter uses a model that is ac-
curate around the operation point θ = 0. As the initial pendulum angle θ0 increases, model in-
accuracies are introduced, and consequently, tracking accuracy of the Kalman filter decreases.
Of course, this can be addressed with more sophisticated approaches; however, this is merely
a simplified illustrative example designed to highlight the fundamental issue of model inaccu-
racies. Models are always approximations of real-world dynamics, and such discrepancies are
particularly pronounced in systems with nonlinear dynamics. A second drawback is that real-
world systems can be highly complex, making manual system identification impractical due to
the extensive effort and expertise required. For example, consider the musculoskeletal model
in Figure 1.4. This model is inherently complex, relying on factors such as tendon attachment
points, nonlinear muscle activations, and its highly person-specific nature. As a result, it serves
only as an approximation, unable to fully capture the unique biomechanics of each individual.
Consequently, a model identified for one person cannot necessarily be transferred to another.
This limitation similarly applies to other systems, particularly those with complex dynamics.

Example 1.3
The Kalman filter is a model-based state estimation algorithm that provides optimal estimates
of a system’s state by combining noisy measurements with a model of the dynamics and the
measurement process. Consider the pendulum from Example 1.1, and let’s assume that only
the Cartesian x-position of the pendulum is measured. The Kalman filter requires a linear
prediction model in the form xt+1 = Axt and measurement model yt = Cxt. However, the
pendulum dynamics in (1.1) contain a nonlinear sine term. We can linearize the dynamics

around θ = 0 to obtain A =
[

1 ∆t
− g
L∆t 1

]
and as measurement model C =

[
L 0

]
. Now, we

can use a Kalman filter to track both state variables from the Cartesian x-position only, and we
plot the state estimates for three initial values for θ.
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Figure 1.5: A Kalman filter is used to track the state (θ and ω, θ̂ and ω̂ are the state esti-
mates) of a pendulum from its Cartesian x-position. The Kalman filter uses a model that
is accurate around the operating point θ = 0. As the initial pendulum angle θ0 increases,
model inaccuracies grow, leading to reduced tracking accuracy, as shown from left to right.
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Data-driven control methods utilize data to design state estimators or controllers di-
rectly. Compared to model-based control methods, data-driven control offers high potential
for improvement in key areas:

1. Adaptability to Complex Systems: Whereas an accurate model might be unavailable,
empirical data can always be recorded and analyzed. For example, in the model-based
paradigm, personalizing biomechanical models for individual patients is often impracti-
cal. In contrast, data-driven approaches can directly utilize data from the specific patient
with minimal additional effort, making them more adaptable to personalized applica-
tions.

2. Efficiency and Transferability: Data-driven control is typically less time-consuming and
requires less expert knowledge, as the control engineer operates at a higher level, fo-
cusing on parameterizing methods that automatically learn from data. This higher-level
approach makes the acquired knowledge more transferable across different tasks, enhanc-
ing the efficiency of the expert.

3. Flexibility Beyond Expert Knowledge: Data-driven methods are not limited by expert
knowledge or pre-existing model assumptions. For instance, as universal function ap-
proximators, anns (Artificial Neural Networks) can identify and learn any statistically
significant patterns within the data.

Current data-driven methods for state estimation include techniques such as Gaussian Pro-
cesses or anns that can infer system states from sensor data. For control, rl (Reinforcement
Learning) algorithms are commonly employed because they allow the optimization of control
policies directly through interactions with the environment.

However, while data-driven methods offer key advantages concerning practicality and
personalization, they come with significant drawbacks. They often require large amounts
of training data to function effectively, and the solutions they generate can be highly specific
to the task at hand, lacking generalizability and flexibility for other applications. The data-
driven solution we aim to learn may involve highly complex systems, such as musculoskeletal
models. Without incorporating substantial prior knowledge, this learning can require a sig-
nificant amount of real-world data, which may not be feasible in practice. Additionally, the
training data must oftentimes be collected using specialized equipment and trained experts.
Even when encountering the same problem again, the previously obtained solution may not
be directly applicable. For instance, a musculoskeletal model trained on data from one indi-
vidual may not generalize to another, necessitating additional data collection and retraining
for each new subject. Similarly, for inertial sensor-based motion tracking, a solution developed
using data collected with sensors manufactured by one vendor may not perform as expected
when applied to a different vendor’s sensors. Data-driven methods often lack robustness under
real-world conditions, as they may have been over-optimized to the precise and controlled en-
vironments in which they were trained. This can lead to poor generalization when faced with
the uncertainties inherent in real-world applications. For example, the exact placement of
wearable inertial sensors on the human body may not always be as precise as it was during the
collection of training data. Additionally, data-driven methods can exhibit significant bias due
to the distribution of the training data. For instance, if the training data primarily represents
specific scenarios or sensor configurations, the solution may struggle to perform effectively in
unrepresented or less common conditions.
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Figure 1.6: A five-fingered humanoid hand, trained with RL and in simulation only, solv-
ing a Rubik’s cube. The policy has been trained in simulation for approx. 13 thousand
years. License Information

Fortunately, sim-to-real approaches can help address these challenges. Instead of relying
on experts to select and train the data-driven solution for the problem at hand, we can simulate
a diverse range of scenarios and train a single, pluripotent solution capable of autonomously
adapting to different situations. By simulating all possible variations of a problem–for instance,
we can consider all possible sensor placements–we can develop robust solutions that eliminate
the need for manual calibration. However, to be practical, these solutions must generalize
effectively from simulation to real-world applications. This challenge is addressed through
sim-to-real techniques, which are discussed in the next section.

1.3 Sim-to-real Transfer and Zero-data Solutions

Simulation-to-reality (sim-to-real) refers to a concept in robotics and ml (Machine Learning)
that involves obtaining a solution in simulation, e.g., training a ann on simulated data that
then gets transferred to the real world. If the transferred solution directly generalizes to real-
world settings, then it is effectively a zero-(real-world)-data solution. For example, in OpenAI
et al. (2019a), a ann-based policy is trained using rl in an incredibly rich humanoid hand
simulation and then later transferred to solve, for the first time, the corresponding real-world
problem (see Figure 1.6).

Sim-to-real transfer offers enormous potential for addressing highly complex tasks and has
gained significant traction in recent years (Zhao et al., 2020). On the one hand, training in
simulation leverages the efficiency and safety of simulations to train, validate, and refine
methods; on the other, it enables the generation of massive amounts of highly diverse train-
ing data. Massive amounts of data enable the scaling of typically ann-based solutions to sizes
that would otherwise be impossible, allowing for the learning of highly complex logic. As a
result of this, sim-to-real is particularly well-established for learning higher-order intelligence,
such as humanoid robots that learn to substitute humans in complex tasks. As an example,
robot foundation models (Firoozi et al., 2023; Hu et al., 2023; Kawaharazuka et al., 2024) and
most notably the Nvidia GROOT project, rely on simulated data. There is an ongoing race to



12 1 Introduction

Inertial Motion 

Tracking Algorithm

Orientations

Figure 1.7: Two imus (Inertial Measurement Units), Xsens Movella Dots, are attached
to the upper and lower leg, and imt (Inertial Motion Tracking) algorithms can be used
to track its motion. imt algorithms uses sensor fusion to combine imu measurements,
consisting of 3d (Three-Dimensional) accelerometer, 3d gyroscope, and 3dmagnetometer,
and estimate a trajectory of orientations.

build the first autonomous humanoid robot. Recently, the AI robotics company Figure unveiled
Figure 02, while Elon Musk, through Tesla, is driving efforts to create the Optimus humanoid
robot. A key component for achieving successful humanoid robots lies in their training within
simulation environments, which is also crucial for building robust foundation models of em-
bodiments (Ahn et al., 2024).

These recent successes demonstrate the promising potential of sim-to-real transfer. How-
ever, current results are still limited, with most efforts focused on specific areas like humanoid
robots. For many other application areas, it remains unclear whether and to what extent sim-
to-real transfer can be effectively applied. This thesis investigates the possibility of developing
a more general approach to sim-to-real transfer, applicable across a wider range of applica-
tions. Could such an approach effectively unify tasks as distinct as motion analysis and motion
control?

In this thesis and the included publications, we leverage the combination of sim-to-real
transfer with rnns to propose an approach that is applicable to both motion analysis and
motion control. We then utilize the developed approach to push the boundaries of application-
specific sota (State of the Art) methods or address problems that were previously unsolvable.
At its core, these solutions are enabled by training anns on vast amounts of simulated data–
data from diverse simulation scenarios, including scenarios traditionally treated as separate
problems–to obtain pluripotent solutions that robustly generalize from simulation to reality.
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Figure 1.8: rt is the task of controlling the output of a system such that it follows a desired
reference signal for a finite duration of time.

1.4 Example Applications

This thesis proposes an rnn-based approach that utilizes sim-to-real transfer. The thesis
demonstrates how it can be applied to real-world state estimation and control problems.
The example applications are imt of kcs (Kinematic Chains) with sparse sensor setups and
unknown sensor-to-segment attachments, and rt in unknown nonlinear dynamics. imt of
kcs with sparse sensor setups and unknown sensor-to-segment attachments represents a chal-
lenging motion state estimation problem from sensor data as it typically arises in real-world
applications. It involves highly complex systems that can perform dynamic, agile motions.
rt in unknown nonlinear dynamics represents a challenging, highly relevant motion control
problem involving complex systems, e.g., srs (Soft Robots).

imt uses body-worn inertial sensors, called imus, to estimate and track the motion of
bodies in space. For example, in Figure 1.7, imt is used to track the motion of a human leg
using two imus. imus, which typically comprise a 3d accelerometer, a 3d gyroscope, and a
3d magnetometer, have become smaller and less expensive within the last two decades and
imt has therefore rapidly become the most promising technology for accurate, reliable, and
inexpensive motion tracking, especially since camera-based systems are typically more expen-
sive, more restrictive, and suffer from occlusion (Huang et al., 2018; von Marcard et al., 2017).
Applications of imt span across various application domains (Seel et al., 2020) ranging from
aerospace engineering (Givens and Coopmans, 2019) to health applications (López-Nava and
Muñoz-Meléndez, 2016).

Finite-horizon rt is the task of controlling the actuators of a system such that its output
follows a desired reference signal for a finite duration of time. In addition, in many real-
world applications, the dynamics of the system are nonlinear and unknown. For example
in Figure 1.8, the angle of a robot arm is actuated by two pneumatic soft actuators that work
as an antagonistic pair. Here, rt is about designing a controller that allows the robot arm
to accurately track a reference signal even though the dynamics of pneumatic soft actuators
are nonlinear and complex to model. Applications of rt include, e.g., autonomous piloting
(Hanover et al., 2024), soft robotics (Haggerty et al., 2023), and industrial settings (Yuan et al.,
2020).
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1.5 Aim of the Thesis

The aim of this thesis is twofold. The first goal is to propose and validate a unified ap-
proach that is applicable to both state estimation and control of systems performing dy-
namic motions and that yields easy-to-use, plug-and-play3 solutions in the form of trained
anns. The developed approach uses simulation environments of complex motion analysis and
motion control problems, combined with extensive domain randomizations, to train anns on
vast amounts of simulated data. Then, by scaling both the size of the anns and the richness of
the simulated data, the trained networks can zero-shot generalize to real-world scenarios while
minimizing reliance on real-world data. One key insight is that by simulating years of random
motions, the trained networks are able to generalize to any specific real-world motion.

The second goal is to demonstrate the effectiveness of the unified approach by applying
it to a) the state estimation task of imt of kcs and b) the control task of rt in unknown
nonlinear dynamics. By applying the unified approach, we obtain solutions that address their
research gaps (as defined in Section 2.2.2 and Section 2.3.2, respectively) and advance their
related work (as defined in Section 2.2.1 and Section 2.3.1, respectively).

The impact of the successful development is manifold:

• Practical Solutions: The approach offers novel solutions to previously unsolved problems,
as it is broadly applicable, requiring only a simulation environment and a suitable set of
domain randomizations. If a simulation environment is unavailable, it can be approxi-
mated from real-world data, with domain randomizations enhancing data efficiency.

• Automatic and Plug-and-play Applicable: The approach minimizes the required expert
knowledge and time investment because a) the engineer operates at a higher level, re-
lying on simulated data for high real-world data efficiency, and b) domain randomiza-
tions ensure robustness which reduces the need for selection, calibration, and adaption
of methods.

• Centralized Development: Since specific applications are built upon the unified approach,
improvements to the framework automatically benefit all downstream implementations.

• Transferability: The unified approach facilitates rapid progress across a broad range of
application domains, as it is not domain-specific in its problem-solving capabilities.

To achieve this impact, the developed approach must be a solution that: 1) requires minimal
problem-specific prior knowledge, 2) avoids repeated manual adaptations, 3) is plug-and-play
applicable to a wide range of diverse problems, and 4) minimizes reliance on real-world data.
This thesis and the included publications demonstrate that the combination of sim-to-real
transfer and rnns can provide such a unified approach.

3plug-and-play solutions do not require time investment or expertise by the user, e.g., in the form of calibration
or tuning
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1.6 Thesis Outline

The thesis consists of two parts. Part I contains the main body of the cumulative dissertation,
and Part II contains the six included publications in non-edited, as-published format.

Part I contains six chapters. The first chapter motivates the topic of motion analysis and mo-
tion control, and introduces classical, model-based, and data-driven solutions relevant to this
topic. Then, two concrete applications are introduced, namely imt and rt, as they are used as
reoccurring application examples in this thesis. The first chapter finishes by defining the aim
of the thesis and outlining the content of the document (this section). The second chapter (Sec-
tion 2) discusses the related work on the general topic of sim-to-real transfer and in the context
of the two application examples. The required background is introduced as needed. The third
chapter (Section 3) lists the publications included in this thesis and summarizes their main
contributions. The fourth chapter (Section 4) provides an overview and high-level understand-
ing through a unified lens of the specific methods developed in the included publications. It
also highlights selected methods in more technical detail. The fifth chapter (Section 5) sum-
marizes the main results of the included publications and discusses them individually and in
combination. The sixth and final chapter (Section 6) summarizes the included papers’ main
contributions and their impact, and finishes by outlining several promising directions for fu-
ture work.





2
Related Work

“The leap from theory to practice is an act of faith.”
– Kenneth Stanley, Research Manager at OpenAI

This thesis uses an rnn-based approach combined with sim-to-real transfer to data-efficiently
solve the dual problem of estimating and tracking state information. The approach is then
applied to advance two concrete application examples: imt and rt in unknown nonlinear
dynamics. This chapter discusses the related work that uses sim-to-real transfer to solve real-
world problems and also discusses related work in the context of the two application examples.
The required background is introduced as needed.

2.1 Sim-to-real Transfer

Sim-to-real refers to a concept in robotics and ml that involves obtaining a solution in sim-
ulation, e.g., training an ann on simulated data that then gets transferred to the real world.
Sim-to-real is a recent trend in robotics (Zhao et al., 2020).

Training in simulation leverages the cost-efficiency and safety of virtual environments to
train, develop, validate, and refine methods. This approach minimizes financial and physical
risks typically associated with direct real-world experimentation. However, the benefits extend
beyond cost and safety. Complex problems require complex solutions, which necessitate access
to vast amounts of data. Simulations can efficiently generate this extensive data, providing
the necessary resources to tackle high-complexity challenges. For example, in OpenAI et al.
(2019a), a ann-based policy is trained in simulation for approximately 13 thousand years to
solve a real-world Rubik’s Cube game with a robot hand (see Figure 1.6). A similar order of
magnitude for data requirements has been observed for learning highly complex and technical
computer games (OpenAI et al., 2019b) (learning Dota 2 in approximately 40 thousand years).
These large data requirements are particularly evident when considering the development of
higher-order intelligence. Humanoid robots that learn to perform complex tasks traditionally
executed by humans significantly benefit from sim-to-real approaches. One example is robot
foundation models, as seen in projects like Nvidia GR00T, an initiative to develop a general-
purpose foundation model for humanoid robots that takes multi-modal instructions and past
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Figure 2.1: Various robotic arms performing different tasks in diverse environments.
Comparable arm robots and environments and many other robots, e.g., quadrupeds,
quadrotors, or humanoids, can be simulated with The Nvidia Isaac Lab software. Sim-
ulating a broad range of scenarios is pivotal for robot foundation model training and suc-
cessful sim-to-real transfer. License Information

preal psim

D

Figure 2.2: Sim-to-real transfer requires that the simulated training data distribution psim
ideally maximizes the overlap (black) or joint distribution (green) of simulated (blue) and
real-world (red) data.

interactions as input and outputs robot actions. It relies on the Nvidia Isaac Lab simulation
platform, a simulation environment that’s optimized for robot learning and that supports all
types of robot embodiments (see Figure 2.1 (Mittal et al., 2023). Robot foundation models,
in general, typically rely on training in simulation before being applied in real-world settings
(Hu et al., 2023). Nvidia has recently extended its ecosystem with Omniverse Replicator, a
framework for developing custom synthetic data generation pipelines and services. A second
example is Haarnoja et al. (2024), where the authors use Deep rl to train a humanoid robot
with 20 actuated joints to play a simplified one-versus-one soccer game. The agent was trained
in simulation and transferred to real robots zero-shot. This zero-shot transfer is achieved via
a combination of system identification and domain randomizations to improve the robustness
of the learned policy, e.g., they varied the location and orientation of the robot-attached imu.
However, they also detail that the sim-to-real gap was too large without system identification.

Successful sim-to-real transfer (that is, obtaining a high-performance real-world solution)
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Figure 2.3: Domain randomization techniques for a three-segment (grey boxes) kc with
body-attached imus (orange boxes). The second kc is obtained by randomizing the imus
attachment. Similarly, the third kc is obtained by randomizing the length of the segments,
and the initial pose is randomized in the last kc. An rnn can be trained to estimate the
rotational state of the kc from the imu measurements by simulating random motion and
the corresponding virtual imumeasurements. Suitable domain randomization techniques
enable the trained rnn to generalize from simulation to experiment.

relies on two components: a) accurate modeling and b) domain randomizations. To see this,
consider the simulation distribution psim and real-world distribution preal over the dataD. If fθ
is an ann-based solution and L is some loss function, then the dilemma of sim-to-real transfer
is finding a simulation distribution such that the trained solution works well on real-world
data without knowing the real-world data distribution, i.e.,

arg min
psim

∫
L (fθ∗ ,D) preal (D) dD where θ∗ = arg min

θ

∫
L (fθ ,D) psim (D) dD (2.1)

If we assume that the loss function is uniformly distributed across the data, then sim-to-real
transfer is about maximizing the probability that we observe real-world data that has been seen
observed in simulation, i.e.,

arg max
psim

∫
psim (D) preal (D)
︸               ︷︷               ︸

joint distribution

dD or arg max
psim

∫
min (psim (D) , preal (D))
︸                         ︷︷                         ︸

overlap (more conservative)

dD. (2.2)

There are two scenarios: either a) uncertainty in preal is low (e.g., via system identification),
then a narrow psim that accurately captures reality is preferred. Or, b) uncertainty in preal is
high, then a broad psim that ensures that the simulation at least has support for the real-world
data is well suited. Thus, domain randomization can achieve plug-and-play applicability of
methods, e.g., consider Example 2.1.
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Example 2.1
Suppose we want to train an ann to estimate the attitude from 6d (Six-Dimensional) imumea-
surements. Real-world gyroscopes can measure a non-zero value despite no rotation change.
This phenomenon is referred to as a bias, and integrating a constant bias leads to a linear drift
in time. There are two options for training an ann such that its predictions do not drift in time:
a) accurate system identification, i.e., knowledge of the precise real-world gyroscope bias value,
or b) domain randomization by simulating thousands of imus with various gyroscope bias val-
ues such that the ann learns to perform bias compensation. Note that the second option yields
a more plug-and-play applicable method because it can be applied to an imu with different
bias terms without additional effort. In contrast, accurate system identification requires man-
ual efforts and time investment.

Many applications use domain randomizations, especially in combination with Deep rl to
enable successful sim-to-real transfer (Zhao et al., 2020). For example, in Matas et al. (2018),
the authors use a modified DDPG algorithm, a Deep RL algorithm, to train an arm robot to
manipulate clothes and other deformable objects from RGB camera observations. They use
PyBullet to train in simulation and transfer the policy zero-shot to an experimental Kinova
Mico 7-dof robotic arm and a low-cost web camera as a sensor. In Rao et al. (2020), the au-
thors propose a method titled RL-CycleGAN, which combines generative adversarial networks
with Deep RL to generate realistic images of a robot arm grasping task. The solution is then
transferred to an experimental Kuka IIWA robot performing several grasping tasks. In Schoet-
tler et al. (2020), the authors use meta-rl to train control policies in simulation, which are
then quickly adapted to perform real-world robotic insertion tasks with minimal real-world
interaction time.

However, sim-to-real transfer comes with its challenges. At its core, we trade off less ac-
curate modeling and broad psim domain randomizations by increasing the workload on the
method or the ann to be trained. Prediction performance decreases as the method is required
to generalize over an increasingly broad spectrum of data (which requires more extensive and
complex solutions). The domain randomizations force the method to (at least implicitly) learn
forms of online calibration and adaption, which typically trades off filter aggressiveness with
the ability to adapt. Coming back to the Rubik’s Cube game example OpenAI et al. (2019a),
the authors enable efficient policy training despite large domain randomizations with a process
called automatic domain randomization. It automates and gradually expands the randomiza-
tion ranges that parameterize a distribution over environments. Additionally, note that it is
nontrivial that there continues to exist a solution as we broaden psim. As we broaden our sim-
ulation and increase the workload on the ann to be trained, we risk entering the realm of
non-observability, consider, e.g., Example 2.2 as an example of this phenomenon.

Example 2.2
Consider Example 2.1, but where we train an rnn to estimate the attitude solely from 3d gy-

roscope measurements. In this case, domain randomization involves simulating thousands of
imus with various gyroscope bias values such that the rnn learns to perform bias compensa-
tion. Unfortunately, now rnn will converge to a much higher training error, regardless of the
network architecture, since the state estimation can no longer be solved. The lack of a solution
can easily be seen by considering the same imu motion, however, with an additional global
rotation of the imu (superposition) with an angular velocity that corresponds exactly to the
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gyroscope bias. Then, the same trajectory of imu measurement is mapped onto two different
attitude trajectories. I.e., the data distribution psim(D) has gained support on two values in
data space where x1 = x2 whilst y1 , y2. The function to be learned no longer exists. This
phenomenon is an example of non-observability (see Theorem B.3).

2.2 Application A: Inertial Motion Tracking of Kinematic Chains

This thesis considers imt of kcs as one of two specific applications of state estimation and
control in systems that perform dynamic motions. In this section, we primarily discuss related
work and its limitations; the latter discussion then leads us to identify the open research gap
in imt. We also introduce the challenges that arise when fusing imumeasurements to estimate
orientations.

The need for reliable and accurate estimation of the orientation, attitude, or pose of articu-
lated objects in 3d space spans across various application domains ranging from aerospace en-
gineering (Euston et al., 2008; Givens and Coopmans, 2019) to health applications (Buke et al.,
2015; López-Nava and Muñoz-Meléndez, 2016; Seel et al., 2020) and methods that address this
need are known as motion capture methods. Motion capture is a broad field that uses various
methodologies. Methods can be divided by the sensors used into camera-based and imu-based
methods. Camera-based methods may further be subdivided into marker-less or marker-based
methods. Marker-based methods are often referred to as omc (Optical Motion Capture). They
combine multiple cameras with body-attached markers that act as beacons. They offer the high-
est precision and are commercially available. Well-known manufacturers are Vicon, OptiTrack,
and Xsens. Marker-less methods use one or more cameras but without body-attached markers.
Multiple methods have been proposed Chen et al. (2021); Mehta et al. (2020); Trumble et al.
(2016) but these methods can a) suffer from occlusion, and b) offer poor robustness for human
motion capture applications.
imu-based methods, also known as imt, use one or multiple body-attached imus to esti-

mate the attitude, orientation, or pose of a single coordinate system or complex articulated
structures, most notably the human body. imus, which typically comprise a 3d accelerometer,
a 3d gyroscope, and a 3dmagnetometer, have become smaller and less expensive within recent
years and imt has therefore rapidly become the most promising technology for accurate, reli-
able, and inexpensive motion tracking of rigid bodies and kcs. Example manufacturers of imus
are Xsens (or, nowadays, Movella), Shimmer, Bosch Sensortec, Analog Devices, or STMicroelec-
tronics. Since imus do not measure orientations directly, dedicated algorithms are necessary to
estimate them. These algorithms will be discussed in the next section.

2.2.1 Related Work

imus do not measure orientations directly; in a process called sensor fusion, the accelerometer,
gyroscope, and magnetometer measurements are combined to estimate orientations accurately.
In a situation in which a well-calibrated imu is kept still in an environment with no nearby
ferromagnetic materials, the 3d orientation can be straightforwardly computed using the sig-
nals from the accelerometer and magnetometer, much like using a water level and a compass
needle. Similarly, the vikings relied on the Polar Star to obtain the northbound direction, as il-
lustrated in Example B.1. However, a gyroscope is essential when the sensor rotates and moves
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quickly (xse, 2018). The two input sources (accelerometer & magnetometer and gyroscope) are
complementary by nature. The gravitational and magnetic components give long-term stabi-
lizing information, while the gyroscope gives high-bandwidth, responsive movement signals.
Suppose the sensor fusion is applied independently for each imu. In that case, the method is
referred to as single-imu sensor fusion, for the task of orientation estimation, this also known
as ioe (Inertial Orientation Estimation); in contrast, Multiple-imu sensor fusion fuses the mea-
surements of all available imus with a central logic (and not independently for each imu).

Single-IMU Sensor Fusion

For ioe, several model-based and ml-based methods have been proposed. Both Madgwick
(2010) and Mahony et al. (2008) offer simple and computationally efficient ioe algorithms
with similar albeit slightly different methodologies. Madgwick (2010) uses an iterative gradi-
ent descent algorithm and updates the orientation estimates by minimizing the error between
the estimated quaternion and the measured gravity and magnetic field vectors. Mahony et al.
(2008) uses a pid feedback controller to correct the drift from integrating gyroscope data. It
adjusts the orientation estimate directly based on the error calculated from the accelerometer
and magnetometer readings. In Zhang et al. (2012), a Kalman-filter-based ioe algorithm is
proposed that uses a model where the gyroscope constitutes the input of the model’s dynamics
and accelerometer and magnetometer readings are used as pseudo measurements1.

However, all three previous methods are prone to the malicious effects that inhomogeneous
magnetic fields, which are often found in indoor environments, can have on the inclination por-
tion of orientation estimates (Seel and Ruppin, 2017). The inclination is the orientation of an
object relative to the horizontal plane (assuming the vertical direction is parallel to the earth’s
gravity direction), and it indicates how much an object is tilted forward or backward. Head-
ing and inclination decomposition refers to breaking down an object’s orientation into a first
rotation around the vertical direction or gravity vector with the heading angle (or yaw angle)
and a subsequent rotation of the inclination (the pitch and roll angles). Such a decomposition
is used in Seel and Ruppin (2017) to ensure that orientation updates that correct the drift from
integrating gyroscope data based on the magnetometer affect only the heading component of
the orientation estimate. A similar ansatz2 is used in Laidig and Seel (2023) and combined with
highly-effective low-pass-filtering. The resulting vqf (Versatile Quaternion-based inertial ori-
entation estimation Filter) filter constitutes the current sota in ioe.

However, if the magnetic field is heavily distorted, e.g., in proximity to ferromagnetic ma-
terial or electric devices (de Vries et al., 2009; Weygers et al., 2023), then a magnetometer-free
approach, omitting the usage of the magnetometer entirely, is required. In this magnetometer-
free scenario, only the inclination and not the heading component of the whole orientation is
estimated. For example, for the task of inclination estimation only (a subset of ioe), the ml-
based riann (Robust IMU-based Attitude Neural Network) filter as proposed in Weber et al.

1pseudo measurements refer to artificial measurements that are not directly measured by physical sensors. In-
stead, they are constructed by combining sensor measurements with system knowledge, model predictions, con-
straints, or assumptions and are used to support the estimation process of a Kalman filter.

2The word “ansatz” comes from the German language and refers to a mathematical approach based on an edu-
cated guess about the form of a solution. The word became widely adopted in the early 20th century, primarily as a
result of German-speaking scientists and mathematicians who contributed heavily to fields like quantum mechan-
ics (e.g., Max Planck, Albert Einstein, Werner Heisenberg).
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1. Inhomogeneous magnetic fields 

2. Sparse sensor setup

3. Unknown sensor-to-segment 
alignment

4. Nonrigid sensor aachment

Figure 2.4: A three-segment kc with two
imus (blue boxes) that demonstrates four
challenges of imt. Multiple-imu sensor fu-
sion can be used to overcome these chal-
lenges. License Information

(2021) which uses an rnn to fuse the magnetometer-free imu measurements (3d gyroscope +
3d accelerometer), rivals vqf.

Four Challenges of IMT

In imt, there are at least four challenges. Inhomogeneous magnetic fields that distort mag-
netometer measurements are the first of these challenges that imt algorithms are confronted
with when estimating orientations. The lack of a heading direction in magnetometer-free ioe
results in an unknown heading offset between two coordinate systems, necessitating additional
algorithms for correction. Such correction algorithms often introduce a second challenge for
imt by requiring accurate modeling in sensor coordinates. This results in the need for sensor-
to-segment calibration, i.e., identifying the joint position and axis orientations in local sensor
coordinates. In addition, sensor-to-segment calibration is essential for tracking anatomically
meaningful quantities. Additionally, while traditional imt uses one imu per segment, solving
sparse problems in which some segments of the arbs (Articulated Rigid Body System) are not
equipped with a sensor would significantly improve usability and reduce costs. Sparse imt
constitutes a third challenge for imt. Finally, imt usually relies on skin-attached imus , e.g.,
via velcro bands (see Figure 2.5). This attachment can introduce motion artifacts due to the
relative motion of the soft tissue between segment and sensor and poses a fourth challenge for
imt as they require effective compensation for accurate segment tracking. The “four challenges
of imt” refers to these challenges, and they are illustrated in Figure 2.4. These challenges can
be addressed by multiple-imu sensor fusion algorithms.

Multiple-IMU Sensor Fusion

Multiple-imu sensor fusion algorithms can be categorized into model- and ml-based algo-
rithms. In general, multiple-imu sensor fusion aims to overcome the previously mentioned
challenges of imt. Model-based algorithms rely on mechanical or biomechanical models to
constrain a degenerate solution space. In contrast, ml-based algorithms typically do not re-
quire modeling. Instead, these algorithms are obtained by training a ml algorithm on input
(imumeasurements) and output (orientation) data (real-world or simulated).
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Segment

Sensor

Mechanical
Joint

Simplification

Knee Joint

Kinematic Chain

Figure 2.5: Two imus are attached to a human’s lower leg (left side). The knee joint’s kine-
matics can be modeled as two segments connected by a 1d (One-Dimensional) hinge joint
(right side). Multiple-imu sensor fusion algorithms can be used to a) track the relative ori-
entation of the knee without relying on magnetometer data, b) estimate sensor-to-segment
calibration parameters, e.g., the knee joint axis direction in sensor coordinates, and c)
compensate for soft tissue motion artifacts, i.e., track the bone motion from skin-attached
sensors.
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Figure 2.6: Sparse imt
uses less than one sen-
sor per segment. A
three-segment with no
imu on the middle seg-
ment; a model of a hu-
man leg that consists of
the kc of hip, thigh,
and shank.

A large body of model-based algorithms uses mechanical models of joints to derive kine-
matic constraints between adjacent segments. For example, Laidig et al. (2017) is a quaternion-
based method that enables magnetometer-free imt for a mechanical 1d joint model. It uses
projections of the joint axes into the horizontal plane and is evaluated in the context of the
knee and finger (interphalangeal) joints. Conceptually similar methods have been proposed to
enable magnetometer-free imt of 2d (Two-Dimensional) and 3d joints. For a 2d joint, Laidig
et al. (2019) corrects the heading offset by exploiting the lack of a rotation axis in the rela-
tive orientation. It is experimentally validated for the metacarpophalangeal joints between the
palm and the fingers. 3d joints can be tracked without the usage of magnetometers, either by
exploiting range of motion constraints of an anatomically relevant Euler angle decomposition
(Lehmann et al., 2020a), or by exploiting the assumption that imus are rigidly connected to a
shared joint center point (Weygers et al., 2020). Biomechanical models can offer superior ac-
curacy for human joints compared to mechanical models. Figure 2.5 shows the simplification
process of the knee joint’s kinematics as a 1d hinge joint. Consequently, similar methods exist
with biomechanical models. For example, Kok et al. (2014) uses a full-body biomechanical
model to enable magnetometer-free imt. It is experimentally validated on the lower human
body.

Similarly, multiple-imu, model-based sensor fusion algorithms have been developed for
sensor-to-segment calibration and sparse imt. For sensor-to-segment calibration, the prior
work by Olsson et al. (2020) proposes a plug-and-play method that exploits a 1d hinge joint
model to estimate the joint axis direction in the sensor frame, and Taetz et al. (2016) uses a
biomechanical model. For sparse imt, Sy et al. (2021) uses a Kalman filter for tracking the
lower body (pelvis, both thighs, both shanks) from a reduced imu count of three instead of
five. In Grapentin et al. (2020), both sparse and magnetometer-free imt advantages have been
successfully combined. They achieve hand motion tracking with a reduced sensor count of five
instead of 16 magnetometer-free imus.

However, using a reduced number of (potentially even magnetometer-free) sensors and
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calibration-free imt naturally spirals to non-observability. Moreover, assessing observability
properties is integral for providing reliable state estimates and is vital for the safe operation
of downstream applications. Unfortunately, analytical observability analysis is a) limited due
to the nonlinear dynamics and b) impractical in large articulated bodies. Still, isolated results
have been achieved. For example, Eckhoff et al. (2020) has derived an observability condition
for a model-based double-hinge-joint three-segment kc. Interestingly, it was found that the ob-
servability depends on the performed motion. A similar observation was made in von Marcard
et al. (2017), where different human poses lead to drastically different orientation errors.

Compared to model-based methods, ml-based multiple-imu algorithms do not require
modeling. Instead, a solution is learned from data. ml-based solutions have been primarily
proposed for human motion tracking where large anns are trained on input-output data of
real-world experiments. Typically, they fuse six or more imus in order to estimate the full-
body pose and are available magnetometer-aided (Huang et al., 2018; von Marcard et al., 2017;
Zheng et al., 2021), or magnetometer-free (Van Wouwe et al., 2023; Yi et al., 2021, 2022). How-
ever, while addressing a challenging problem, these methods are limited to human motion
capture with one specific sensor setup and assume statistical patterns of human motion (von
Marcard et al., 2017), or full-body biomechanical models (Yi et al., 2022) to constrain the es-
timated pose. Interestingly, excluding the ioe method riann (Weber et al., 2021), ml-based
imtmethods are largely limited to human motion capture. These limitations lead us to define
the following research gaps.

2.2.2 Research Gap

This section discusses the research gaps and questions in imt relevant for this thesis, and that
are not yet addressed with prior work. In imt, there is a need but no solution for:

• (Research Gap A) A method that assesses observability. Observability (see Definition B.2)
is a key property for ensuring feasible, consistent, and safe state estimation, and in order
to push the boundaries of imt, it is useful first to assess the observability properties of the
problem at hand, that is, ensuring that the estimation problem can be solved under per-
fect, in-silico conditions. As such, we aim to develop a method for observability analysis
of imt problems. Currently, there only results on the observability properties of indi-
vidual, specific kc configurations. Moreover, the developed methods may have broader
applicability to other domains involving arbss, suggesting opportunities for transfer.

• (Research Gap B) A method for motion artifact reduction. The entirety of imt depends on
body-attached imus to track the motion. However, often, while the underlying segment
motion is the target variable, the imus are attached in a way that allows for relative mo-
tion between the imus and the underlying segments. This relative motion most notably
occurs in the case of imus that are attached to human tissue (typically via velcro bands,
see Figure 2.5) or that are attached to clothes. This undesired relative motion introduces
motion artifacts in the estimated segment motion.

• (Research Gap C) A method that allows to address an arbitrary combination of a set of the
four imt challenges. Currently, most methods only address a single challenge in isolation;
only a few selected methods combine more challenges and none all. However, overcom-
ing multiple challenges simultaneously is crucial to enable accurate, least restrictive, and
easy-to-use imt in real-world conditions.
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• (Research Gap D) A plug-and-play, pluripotent method to dramatically increase usability,
currently multiple-imu sensor fusion requires extensive expert knowledge. A pluripotent
method is problem unspecific, i.e., it can be applied to a broad range of problems. A plug-
and-play method can be applied without calibration or tuning. Currently, to apply imt,
the user must successfully identify the method suitable for the given problem and typi-
cally specify parameters such as joint axes’ directions and sensor placement. Therefore,
the user must be an expert in the field of imt, which strongly limits the use of imus in
many application domains. Moreover, a given problem might require a nontrivial combi-
nation of methods which may exclude each other.

By addressing the above research gaps, we also provide answers to the following research
questions:

• What kcs can be accurately tracked with which imu sensor setups under ideal, in-silico
conditions? Can the imus be placed arbitrarily? Can the joints be 1d, 2d, or even 3d? To
what extent is sensor-to-segment calibration required?

• Can anns be cheaply trained in simulation and afterward zero-short generalize from
simulation to experiment?

• Is it possible to estimate the pose of a three- or even four-segment kc using only two 6d
imus?

• Can anns learn to filter out motion artifacts due to nonrigidly attached imus and recon-
struct the underlying segment motion?

2.3 Application B: Reference Tracking in Unknown Nonlinear
Dynamics

This thesis considers rt in unknown nonlinear dynamics as the second of two specific appli-
cations of state estimation and control in systems that perform dynamic motions. Specifically,
rt is an example of control that includes complex systems such as, e.g., srs, and that involves
agile, dynamic motions in the form of reference signals. As in the previous section, we discuss
related work and its limitations and define the open research gap in RT.

Real-world applications such as, e.g., autonomous piloting (Hanover et al., 2024), soft
robotics (Haggerty et al., 2023), and in industrial settings (Yuan et al., 2020), require control-
ling the output of a system with initially unknown nonlinear dynamics such that it follows
a desired reference signal for a finite duration of time. This task is known as rt and can be
formalized as follows: Assume there exists some unknown system dynamics Ψ that maps a
time-varying, finite-time input signal u(t) ∈ R

p to a possibly noisy output vector y(t) ∈ R
q,

that is
y(t) = Ψ

[
u(t′ < t)

] ∀t ∈ [0, T ], (2.3)

where T ∈ R is the finite trial duration. Note that Ψ includes the dependency on the unknown
initial state x(t = 0). Then, rt (as considered here) aims to design a feedback controller that
manipulates u(t) to let y(t) follow a given time-varying reference signal y∗(t) ∈ R

q. Thus, we
seek to find a controller dynamics Φ that maps y∗(t) and y(t) to the input vector u(t), i.e.

u(t) = Φ
[
y∗(t′ < t), y(t′ < t), t

] ∀t ∈ [0, T ], (2.4)



28 2 Related Work

Figure 2.7: A sr that grips a ball (left side) and a robot arm actuated by a pam (Pneumatic
Artificial Muscle) (right side). Both systems are complex and difficult to model, making
data-driven control methods desirable. License Information

such that it minimizes the tracking error between the output and the reference signal, i.e.

Φ∗ = arg min
Φ

T∫

0

∥∥∥y∗(t) − y(t)
∥∥∥

2
dt, (2.5)

over the finite trial duration.
This problem formulation is multifarious:

• A subset of the state of the system might be observed, i.e., y ⊆ x,

• the dimensionality of the system state might be unknown,

• the initial state x(t = 0) might vary between trials and might be unknown,

• the reference signal might vary between trials and might not be provided beforehand.

2.3.1 Related Work

The prior work that can enable accurate rt is rich. Different fields with different methodologies
offer solutions, but each has its trade-offs and limitations.
rl offers a general framework encompassing almost any problem formulation. However,

only a limited number of prior works exist on rl for rt. This might be due to the different scope
of rl. rl typically assumes full state knowledge, learns unsafely by trial-and-error, and learns
controllers by maximizing reward with reward functions that are often limited to a single task
or motion. For example, the influential work of Deisenroth and Rasmussen (2011) proposes
pilco (Probabilistic Inference for Learning Control) and learns state-feedback controllers for
setpoint tracking. It combines a Gaussian process dynamics model with gradient-based policy
improvement to improve iteratively over several trials. It has been validated on several experi-
mental systems and offers outstanding data efficiency with only 20 − 90 seconds of interaction
time. However, pilco requires full state knowledge at all times and only considers single-task
learning, i.e., the feedback controllers have no reference or target state input.
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This limitation can be addressed by forms of multi-task rl (Teh et al., 2017) or via multi-
objective reward functions (Friedman and Fontaine, 2018). For example, Zhai et al. (2023) uses
Deep rl to enable collision-free rt control of surface vehicles. However, large amounts of train-
ing data are required, and the method is only validated in simulations rather than experiments.
To address the issue of full state knowledge, pomdp (Partially Observable Markov Decision
Process) can be used. rl methods tailored for pomdps have been developed (Hausknecht and
Stone, 2015) and include, e.g., a recurrent policy function (Wierstra et al., 2010), stacking mul-
tiple observations, or, as a patch, a recurrent filter prior to amdp (Markov Decision Process)-rl
algorithm (Schäfer, 2008). Unfortunately, the applicability of these methods is limited by large
data requirements (Deisenroth and Rasmussen, 2011; Schuitema, 2012). Finally, to overcome
the issues of single-task learning and full-state knowledge, another solution might be to in-
terpret a varying number of motions or reference signals as part of a single pomdp. Every
time the environment is reset, the reference signal changes, and with it, the observations and
rewards. This concept is introduced in Section 4.3.1. Overall, rl is a general framework capa-
ble of addressing many problem formulations. However, it has limitations in that it typically
assumes full state knowledge, learns unsafely through trial-and-error, and is often constrained
to single-task learning with reward functions that are not well-suited for multi-task scenarios.

The field of oc (Optimal Control), including most notably mpc, typically optimizes a state-
dependent quadratic loss and requires a model of the system dynamics. Recent data-driven
oc approaches learn models from data. For example, Torrente et al. (2021) uses Gaussian
processes combined with mpc to enable precise, highly agile motion tracking with quadrotors.
The mpc enables real-time, multi-task feedback control at 50 Hz, but it a) requires access to
the system state at all times (the real-world quadrotor flies inside a omc tracking range and
is equipped with markers) and b) requires knowledge of a nominal model of the dynamics
and only learn the model mismatch from data. As a second example for oc, in Bevanda et al.
(2022), Koopman operators are used to learn high-dimensional, linear models of nonlinear
dynamics. The linear model is combined with lqr controller design for state-feedback control.
The solution is validated in simulation. Overall, oc is a framework that typically optimizes
a state-dependent quadratic loss and relies on a system dynamics model. However, it has
limitations in that it requires access to the full system state and depends on a nominal model,
with only the model mismatch being learned from data in recent data-driven approaches.
ilc (Iterative Learning Control) is a learning control strategy used for rt in systems that

perform the same task repeatedly. In contrast to the previous methods, ilc learns feedforward,
not feedback controllers, making the approach inherently more prone to external disturbances.
Additionally, ilc typically assumes a linear, time-invariant system model and learns to perform
only a single task (Bristow et al., 2006). Data-driven ilc does not require a system model.
Instead, it iteratively learns a model from input-output data. For example, Meindl et al. (2022)
iteratively applies an input trajectory to the unknown dynamics, trains a Gaussian process
model based on the experimental data, and utilizes the model to update the input trajectory
until the desired tracking performance is achieved. The proposed method is validated on three
experimental setups. However, while impressive, the work and ilc in general is still mainly
focused on single-task learning and learns feedforward control, making it more susceptible to
external disturbances.

One exemplary application field that requires rt in unknown nonlinear dynamics is fields
that involve srs. srs are gaining significant interest in diverse (bio)medical and industry ap-
plication domains due to their inherent soft characteristics, which provide srs with unique
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advantages over their rigid counterparts (Walker et al., 2020). Unfortunately, their unique
soft materials put additional strain on control engineers since modeling these soft structures
is challenging. Currently, the task of rt for srs is addressed by either a) model-based control
methods for srs or b) data-driven methods. Model-based control methods typically require a
detailed system model for accurate control and, therefore, involve extensive system modeling
combined with human expertise (Della Santina et al., 2023; Johnson et al., 2021). In contrast,
data-driven methods facilitate this process. For example, Johnson et al. (2021) uses a hybrid
approach that combines an analytical model of the sr with a ann-based model. The hybrid
model is combined with mpc to control an experimental sr continuum joint. In Centurelli
et al. (2022), Deep rl is used for non-agile, quasi-static rt of a real-world sr arm. First, an
rnn-based model is trained to approximate the sr’s dynamics. The sr arm is equipped with
markers, and the pose and state of the sr are tracked with an omc system. Then, a ann-based
state-feedback controller is trained by closing the loop with the rnn-based model, and the
controller’s parameters are optimized using rl. The trained controller is then transferred to
the real-world system. In Haggerty et al. (2023), Koopman operators are combined with lqr
to achieve rt with a sr arm. The method is validated with a real-world sr arm that reaches
end-effector velocities of up to 1.52 m s−1 and requires 5 minutes of training data. Overall, con-
trol algorithms for srs are progressing quickly in their ability to handle the unique challenges
posed by soft materials. However, they still have the limitations that model-based approaches
require extensive system modeling and expertise. At the same time, data-driven methods often
need large amounts of training data and are typically limited in agility or task flexibility. These
limitations lead us to define the following research gaps.

2.3.2 Research Gap

This section discusses the research gaps in rt that prior work has not yet addressed, and that
are relevant for this thesis. In rt, there is a need but no solution for:

• (Research Gap E) A method

– that enables accurate rt of agile, dynamic, non-repetitive reference motions. ilc
typically requires repetitive reference motions.

– that can be applied to systems with unknown nonlinear dynamics and that, via re-
peated measurements, autonomously adapts to the unknown dynamics. oc typi-
cally requires a system model.

– that can be applied to systems where only a system output is measured and not the
full state of the system; additionally, the state dimensionality can be unknown. rl
typically requires that the system state is observed.

– that does not require expert knowledge but instead exposes a minimal set of intu-
itive hyperparameters and automatically operates and accurately controls the sys-
tem without further user intervention.

– that is highly data-efficient and offers high-performance control after a minimal
amount of system interaction time.

– that generalizes (or quickly adapts) to a broad range of qualitatively different refer-
ence motions. Motions that might not have been observed before or during training.



2.3 Application B: Reference Tracking in Unknown Nonlinear Dynamics 31

– that is robust to external disturbances (such as mechanical user intervention) and
noise.

– that offers comprehensive validation in simulation and experiment.

• (Research Gap F) A method that enables srs to learn to perform agile, non-repetitive mo-
tions from only a parsimonious amount of experimental interaction time and without re-
quiring any prior model knowledge. Prior work in sr requires either modeling, does not
enable agile motions, or is not data-efficient. This makes the solution time-consuming,
labor-intensive, or restricted.

By addressing the above research gaps, we also provide answers to the following research
questions:

• For what systems with nonlinear dynamics can we learn high-performance output feed-
back control?

• What are the data requirements? How much input-output data is needed?

• How robust is data-driven learning control to noisy measurements and external distur-
bances?

• Is a trial-invariant initial state strictly required?
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Publications

“What gets measured, gets recognized.”
– Peter Drucker, American author

This chapter lists the publications included in this thesis and summarizes their main contribu-
tions.

3.1 Listing of Publications

Part II includes six published or accepted papers relevant to this thesis. They are listed below
in chronological order.

Paper A: RNN-based Observability Analysis for Magnetometer-Free Sparse Inertial Motion
Tracking

Paper A is the publication of

Simon Bachhuber, Daniel Weber, Ive Weygers, and Thomas Seel. RNN-based Ob-
servability Analysis for Magnetometer-Free Sparse Inertial Motion Tracking. In
2022 25th International Conference on Information Fusion (FUSION), pages 1–8,
Linköping, Sweden, July 2022. IEEE. ISBN 978-1-73774-972-1. doi: 10.23919/
FUSION49751.2022.9841375.

Summary: imus are widely used for imt of kcs in numerous applications, and while
magnetometer-free sensor fusion enables reliably high accuracy in indoor environments and
near magnetic disturbances, the use of sparse sensor setups would yield additional advan-
tages in cost, effort, and usability. However, it is unclear which sparse sensor setups can be
used to track which motions of which kcs since the observability of the underlying nonlinear
dynamics is barely understood to date. This paper proposes a method, named rnno (Recur-
rent Neural Network-based Observer), that utilizes rnns and automatically generated training
data to assess the observability of the relative pose of kcs in sparse imt systems. We apply
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this method to a range of double-hinge-joint systems that perform fully-exciting random mo-
tion. Results show how the degree of observability depends on the kinematic structure and
that rnn-based observers can achieve small tracking errors in an extensive range of sparse and
magnetometer-free setups. rnno enables systematic assessment of observability properties in
complex nonlinear dynamics and represents a crucial step toward enabling reliably accurate
and non-restrictive imt solutions.

Background and author contributions: The idea of utilizing anns to assess the observabil-
ity of systems by training on simulated random motion has been initially proposed by DW and
TS prior to the start of SB’s PhD work. SB has developed the idea into a valid method with the
help of fruitful discussions with DW and TS. SB has implemented all algorithms. IW and TS
have supported SB in manuscript writing, structure, and formatting.

Paper E: Neural ODEs for Data-Driven Automatic Self-Design of Finite-Time Output
Feedback Control for Unknown Nonlinear Dynamics

Paper E is the publication of

Simon Bachhuber, Ive Weygers, and Thomas Seel. Neural ODEs for Data-Driven
Automatic Self-Design of Finite-Time Output Feedback Control for Unknown Non-
linear Dynamics. IEEE Control Systems Letters, 7:3048–3053, July 2023b. ISSN
2475-1456. doi: 10.1109/LCSYS.2023.3293277.

Summary: Many application fields, e.g., robotic surgery, autonomous piloting, and wear-
able robotics, greatly benefit from advances in robotics and automation. A common task is
to control an unknown nonlinear system such that its output tracks a desired reference sig-
nal for a finite duration of time. A learning control method that automatically and efficiently
designs output feedback controllers for this task would significantly boost practicality over
time-consuming and labor-intensive manual system identification and controller design meth-
ods. In this paper, we propose anodec (Automatic Neural Ordinary Differential Equation
Control), a data-efficient automatic design of output feedback controllers for finite-time rt
in systems with unknown nonlinear dynamics. In-silico validation shows that anodec can –
automatically – design competitive controllers that outperform two controller baselines and
achieve an on average ≈ 30%/17% lower median rmse (Root Mean Squared Error). This perfor-
mance is demonstrated in four nonlinear systems using multiple, qualitatively different, and
even out-of-training-distribution reference signals.

Background and author contributions: This paper’s relatively straightforward idea has
been proposed by SB: If both model and controller are modeled using nodes (Neural Ordi-
nary Differential Equations), then their closed-loop is again a differentiable node. This node
should ideally behave like a unit mapping for a broad range of reference signals, and the con-
troller’s parameters may be optimized using backpropagation to achieve this. TS has offered
guidance for developing and evaluating the method. SB has implemented all algorithms. IW
and TS have supported SB in manuscript writing, structure, and formatting.

Paper B: Plug-and-play Sparse Inertial Motion Tracking With Sim-to-Real Transfer

Paper B is the publication of
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Simon Bachhuber, Dustin Lehmann, Eva Dorschky, Anne D. Koelewijn, Thomas
Seel, and Ive Weygers. Plug-and-Play Sparse Inertial Motion Tracking With Sim-
to-Real Transfer. IEEE Sensors Letters, 7(10):1–4, October 2023a. ISSN 2475-1472.
doi: 10.1109/LSENS.2023.3307122.

Summary: imus are used for imt in a growing number of applications as sensor fusion
methods are being advanced in three directions: magnetometer-free imt methods that elim-
inate the effect of magnetic disturbances; sparse imt approaches that lead to reduced setup
complexity; and automatic self-calibration of sensor-to-segment positions or orientations. In
this paper, we propose an approach that combines all three achievements and, for the first
time, enables plug-and-play, magnetometer-free, and sparse imt. This is accomplished by
training an rnno on just-in-time simulated motion data of kcs. We demonstrate that domain-
specific training data augmentations lead to a trained rnno, which zero-shot generalizes to
previously unseen experimental data and, thus, overcomes the sim-to-real gap. The trained
rnno achieves a tracking error of < 4 degrees when estimating the relative pose of a three-
segment kinematic chain with two hinge joints. The proposed method offers a novel simulation-
data-driven approach for solving complex sparse sensing problems while assuring robust and
plug-and-play generalizability to experimental data.

Background and author contributions: SB has proposed the idea that the in paper A
trained rnno might zero-shot generalize to real-world data. TS and IW have provided guid-
ance for developing suitable domain randomization techniques to close the sim-to-real gap
successfully. SB has implemented all algorithms. DL has planned and conducted experiments
and recorded real-world validation data. ED, AK, and IW have supported SB in manuscript
writing, structure, and formatting.

Paper C: Dispelling Four Challenges in Inertial Motion Tracking with One RING (Recurrent
Inertial Graph-based Estimator)

Paper C is the publication of

Simon Bachhuber, Ive Weygers, and Thomas Seel. Dispelling four challenges in in-
ertial motion tracking with one recurrent inertial graph-based estimator (RING). In
12th IFAC Symposium on Biological and Medical Systems - 12th BMS 2024, Septem-
ber 2024c. doi: 10.48550/arXiv.2409.02502.

Summary: This paper extends ring, a novel neural-network-based solution for imts, to
generalize across an extensive range of sampling rates. We demonstrate that it can overcome
four real-world imt challenges: inhomogeneous magnetic fields, sensor-to-segment misalign-
ment, sparse sensor setups, and nonrigid sensor attachment. ring can estimate the rotational
state of a three-segment kc with double hinge joints from inertial data and achieves an exper-
imental mae (Mean Absolute Error) of 8.10 ± 1.19 degrees if all four challenges are present
simultaneously. We conduct an ablation study to analyze the impact of each of the four chal-
lenges on ring’s performance, showcase its robustness to varying sampling rates, and demon-
strate that ring is capable of real-time operation.

Background and author contributions: SB has proposed the idea that the in paper D
trained ann can overcome four imt challenges simultaneously. SB has implemented all al-
gorithms. DL and SB have planned experiments. DL, TS, and SB have conducted experiments



36 3 Publications

and recorded real-world validation data. IW has supported SB in the manuscript writing, struc-
ture, and formatting.

Paper F: A Soft Robotic System Automatically Learns Precise Agile Motions Without Model
Information

Paper F is the publication of

Simon Bachhuber, Alexander Pawluchin, Arka Pal, Ivo Boblan, and Thomas Seel.
A soft robotic system automatically learns precise agile motions without model in-
formation. In 2024 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), October 2024a. doi: 10.48550/arXiv.2408.03754.

Summary: Many application domains, e.g., in medicine and manufacturing, can greatly
benefit from pneumatic srs. However, the accurate control of srs has remained a significant
challenge to date, and conventional control design methods often require significant amounts
of human expertise. In recent works, the data-driven method, anodecs, has been successfully
used to – fully automatically and utilizing only input-output data – design controllers for vari-
ous nonlinear systems in-silico, without requiring prior model knowledge or extensive manual
tuning. In this work, we successfully apply anodecs to automatically learn to perform agile,
non-repetitive rt motion tasks in a real-world srs and within a finite time horizon. To the
best of the authors’ knowledge, anodecs achieves, for the first time, performant control of
a sr with hysteresis effects from only 30s of input-output data and without any prior model
knowledge. Overall, this contribution not only further strengthens the validity of anodecs
but marks an important step towards more practical, easy-to-use srs that can automatically
learn to perform agile motions from minimal experimental interaction time.

Background and author contributions: TS has proposed that the method developed in pa-
per E is well suited for sr control. AlP has designed and built the experimental soft robot. ArP
has conducted the experiments under the supervision of AlP and SB. TS and IB have supported
AlP and SB in manuscript writing, structure, and formatting.

Paper D: RING: A Single Pluripotent Inertial Motion Tracking Solution

Paper D is the publication of

Simon Bachhuber, Ive Weygers, Dustin Lehmann, Mischa Dombrowski, and Thomas
Seel. Recurrent Inertial Graph-Based Estimator (RING): A Single Pluripotent Iner-
tial Motion Tracking Solution. Transactions on Machine Learning Research, July
2024b.

Summary: This paper introduces a novel ml-based method for imt, named ring, that
provides a pluripotent, problem-unspecific plug-and-play imt solution that, in contrast to con-
ventional imt solutions, eliminates the need for expert knowledge to identify, select, and pa-
rameterize the appropriate method.

Background and author contributions: SB has proposed the idea of a decentralized net-
work of rnns that estimates the entire rigid-body pose recursively, motivated by modern
rigid-body dynamics algorithms such as, e.g., the Recursive Newton-Euler algorithm or the
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Composite-Rigid-Body algorithm (Featherstone, 2008). SB has proposed that this novel archi-
tecture presents the opportunity for a single pretrained ann to be used for a broad range of
imt problems, including kcs with a varying number of segments. SB has implemented all al-
gorithms. DL and SB have planned experiments. DL, TS, and SB have conducted experiments
and recorded real-world validation data. TS, IW, and MD have supported SB in manuscript
writing, structure, and formatting.

3.2 Main Contributions

This section lists the contributions made by the publications listed in Section 3. This section
also briefly discusses how these contributions complement the related work and how they ad-
dress the research gaps defined in Section 2.2.2 and 2.3.2.

• Observability analysis for imt (Research Gap A): rnno (see paper A) is the name of an
rnn architecture and a method for assessing the observability property of simulated imt
problems. The proposed method is based on the concept of observability by example,
and observability is defined as a binary and non-binary system property, which includes
degrees of observability. Finally, rnno is used to reveal previously unknown results
about the observability property in imu-based motion tracking of a kc with two hinge
joints, with known joint axes’ directions, and with a sparse imu setup (one imu on each
outer segment). Specifically, it is shown that the degree of observability decreases (i.e.,
the estimation problem becomes more challenging) as the directions of the joint axes
align.

• Motion artifact reduction for imt (Research Gap B): ring (see paper D) is a pluripotent
imt solution capable of motion artifact reduction. Paper D achieves this by training on
data that includes a wide range of motion artifacts. The nonrigidly attached imus are sim-
ulated by modeling the sensor-to-segment connection as a mass-spring-damper system.
Domain randomization techniques are introduced to vary the damping and stiffness pa-
rameters, generating a wide range of simulated motion artifacts. Paper D demonstrates
that ring enables effective motion artifact reduction, outperforming sotamethods com-
bined with low-pass filtering for tracking a two-segment kc. Furthermore, paper C ex-
tends these findings, showing that effective motion artifact reduction is achievable even
for a three-segment kc with a sparse sensor setup.

• Real-world imt that addresses several challenges in imt simultaneously (Research Gap C):
rnno (see Paper A) is an rnn that, for the first time, combines three out of the four imt
challenges (see Section 2.2.1) by enabling magnetometer-free, sparse, self-calibrating imt
of a double-hinge joint kc (see paper B). Paper B achieves this via novel domain ran-
domization techniques such that the in-simulation-trained rnno of paper A zero-shoot
generalizes to real-world data by successfully overcoming the sim-to-real gap. Paper B
also constitutes the first experimental proof of concept of the unified approach; that is, it
showcases the validity of the combination of in-simulation-trained rnns with extensive
domain randomization to solve real-world state estimation problems. By replacing rnno
with the more powerful ring in paper B, paper C can extend the results from paper B
to imu setups that are nonrigidly attached and that suffer from motion artifacts. Despite
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the nonrigid imu attachment, ring can provide accurate orientation estimates and solves
for the first time a imt problem that combines all four imt challenges (see Section 2.2.1).

• A plug-and-play, pluripotent imt solution (Research Gap D): ring (see paper D) is an
imt solution, based on an online-capable ann architecture, that, due to its unique archi-
tecture, allows for a single ann to be trained on a broad range of imt problems that vary
greatly in aspects such as the number of attached sensors, or the number of segments
in the kc. This architecture enables ring to provide a pluripotent, problem-unspecific
plug-and-play imt solution that, in contrast to conventional imt solutions, eliminates the
need for expert knowledge to identify, select, and parameterize the appropriate method.

• A data-efficient, plug-and-play learning control method for rt in unknown nonlinear
dynamics (Research Gap E): anodec (see paper E) is a data-efficient learning control
method that automatically designs output feedback controllers for finite-time rt in sys-
tems with unknown nonlinear dynamics. The approach assumes no prior knowledge of
the system, neither in the form of an approximate system model nor state observability
and even knowledge of the state’s dimensionality is not required. In paper E, anodec is
validated extensively in-silico using various simulated systems and reference signals.

• Data-efficient sr control without prior model knowledge (Research Gap F): anodec (see
paper E) is validated for an experimental sr setup in paper F. The paper, on the one
hand, provides experimental validation for anodec, while, on the other, it demonstrates
anodec’s ability to enable real-world pneumatic soft actuators to – fully automatically
– learn to perform agile, non-repetitive motions, from only 30 seconds of experimental
interaction time.
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“Using a simple tool to solve a complex problem does not result in a simple solution.”
– Larry Wall, author of the Perl programming language

In the previous chapter, we listed the publications included in this thesis and their contribu-
tions. In this section, we will a) provide an overview and high-level understanding of the
methods that have been developed in these publications (Section 4.2.2 and Section 4.3.2), and
b) look at two selected methods in more technical detail (Section 4.2.3 and Section 4.3.3).

4.1 Background and Unified Approach

This section provides some background information required to understand the unified prob-
lem formulations and solutions of the two example applications.

4.1.1 Partially Observable Markov Decision Processes

A mdp is a mathematical framework that models decision-making in environments where out-
comes are partly random and partly controlled by a decision-maker, characterized by states,
actions, transition probabilities, and rewards. pomdps generalize mdps by modeling the rela-
tionship between an agent and its environment, where the system dynamics are determined by
a mdp, but the agent cannot directly observe the underlying state.

A discrete-time, finite-time pomdp P is characterized by a 9-tuple (S , S0,O,A, F, O, R, γ, T )
where S is the space of all states, S0 is the initial state distribution, O is the space of all obser-
vations, A is the space of all actions, F(st+1|st , at) is the transition probability (or function if the
system is deterministic), O(ot |st , at) is the observation probability (typically a probability dis-
tributions due to sensor noise), R : S × A → R is the reward function, γ ∈ [0, 1] is the discount
factor, and T ∈ N is the finite time horizon.

At each moment in time t ∈ [0, T ], the environment is in some state st ∈ S . The agent
takes an action at ∈ A which causes the environment to transition to state st+1 with probability
F(st+1|st , at) and to emit a) the observation ot ∈ O with probability O(ot |st , at), and b) the reward
rt := R(st , at). This loop continues until the time horizon T is reached. The goal of the agent is
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to maximize the expected, discounted, accumulated reward EP
[∑T

t=0 γ
trt

]
, which is called the

return.
In the two considered applications A and B, the discount factor γ is set to 1 since future

tracking performance is just as important as current tracking performance. At the same time,
the finite time horizon guarantees that the sum is bounded despite γ = 1.

The decision-making component in an agent is referred to as a policy. Unlike the policy
function in mdps, which maps the underlying states to the actions, a pomdp’s policy maps
the history of observations to the actions. In other words, for a given pomdp P , a policy π
is a map at = π(o1:t). In, e.g. Deep rl, the policy is typically an ann with parameters θ,
i.e., π = πθ. The optimal policy π∗ of P is the policy that maximizes the return, i.e., π∗ =
arg max

π
EP ,π

[∑T
t=0 γ

trt
]
.

4.1.2 Recurrent Neural Networks

rnns are a class of anns designed to recognize patterns in sequences of data such as text and
language, or numerical time series data. Unlike feedforward anns, rnns have loops, allowing
information to persist. The policy in a pomdp maps the history of observations to the action,
so the policy typically processes a time series of numerical data. This makes rnns a natural
choice for parameterizing a trainable policy. rnns are trained with backpropagation through
time. The features, variants, challenges, and solutions surrounding rnns are outlined in detail
in Appendix A.

4.1.3 Sim-to-real Transfer

Recall from Section 2.1 that the dilemma of sim-to-real transfer is designing a simulation such
that its data distribution and in-silico trained solution works well on real-world data. As part
of the sim-to-real transfer, we trade off less accurate modeling and a broad simulation environ-
ment psim by a) increasing the workload on the method or the ann to be trained, and b) by
reducing prediction performance since the ann is forced to learn forms of online calibration
which limits filter aggressiveness. Eq. (2.1) is directly applicable to the pomdp P , with the
following substitutions. In the context of P , the loss function L in eq. (2.1) is given by the
return, the ann-based solution is given by the policy πθ, and the two data distributions psim
and preal are indirectly given by the simulation environment Psim and the real-world scenario
Preal of P . With these substitutions in place, the dilemma of sim-to-real transfer is the problem
that we can only optimize EPsim,πθ

[∑T
t=0 γ

trt
]

even though we are interested in maximizing

EPreal,πθ

[∑T
t=0 γ

trt
]
.

Thus, if the policy performs much worse in the real world than in the simulation, it follows
from eq. (2.2) that this performance difference is due to little overlap of the simulation and real-
world data distribution. Potential differences between Psim and Preal are: 1) Gap in transition
function F, e.g., the simulation model might not capture the real world well enough; 2) Gap
in measurement function O, e.g., the real-world sensors might have different noise and bias
properties; 3) Gap in state distribution S0, e.g., simulated and real-world motions might have
different statistical patterns, e.g., random motion compared to human gait results in largely
different distributions of joint angles.
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4.1.4 A Unified Approach

The unified approach for state estimation and control of systems that perform dynamic mo-
tions is as follows. We will use pomdps to formalize both motion analysis and motion control
problems and allow for their forward simulations. Typically, pomdps are used for motion con-
trol. However, motion analysis is also formulated as a pomdp to address motion analysis and
motion control problems within a unified framework. Then, we will train policies in-silico with
thousands of forward simulations with randomly drawn reference motions. We will use rnns
to parameterize the policy, which can handle partial observations. Domain randomizations are
used to obtain robust, plug-and-play optimal policies that are transferred from simulation to
reality. The entire framework is visualized in Figure 4.1.

4.2 Application A: Inertial Motion Tracking of Kinematic Chains

This thesis uses imt as an example application of a challenging state estimation problem in-
volving systems that perform dynamic motions. imt uses body-worn inertial sensors, called
imus, to estimate and track the motion of bodies in space. For example, in Figure 1.7, imt is
used to track the motion of a human leg using two imus.

4.2.1 Problem Formulation

In order to apply the unified approach for imt, we first formulate the problem as a pomdp.
The pomdp Pimt (or to emphasis Pimt, sim) models the task of imt of an arbs with N bodies
and (at most) one imu per body and is given by

• S : The state st of an arbs is the set of joint positions qt and velocities q̇t at time t. The
arbsmoves because of an external force or torque τt that acts on its joints (its dofs). To
encapsulate a predetermined motion q∗1:T in the state, we choose st = {qt , q̇t , q∗1:T } and
compute torques using PD control.

• S0: The initial state is given by s0 = {q∗1, 0, q∗1:T } and subsequently a distribution is pro-
vided for reference motion trajectories q∗. The rcmg (Random Chain Motion Generator),
first introduced in paper A, is a function that allows to draw random reference trajecto-
ries for any arbs.

• O: The observation ot in imt is the set of all measurements of N imus at a moment
in time, ot = {ω i(t), ai(t),mi(t), ji(t) | ∀i} where ω i(t)/ai(t)/mt(t) are 3d gyroscope / ac-
celerometer / magnetometer measurements of imu attached to body i at time t, and ji(t)
is optional and symbolic for additional known quantities such as anatomical calibration
parameters. In magnetometer-free imt, the observation ot does not contain magnetome-
ter measurements mi(t).

• A: The action at in imt is the agent’s predicted pose of the arbs, i.e., at = {q̂i(t) ∈ H | ∀i}.
Note that the action (the predicted pose) does not influence the system since imt is a
motion analysis problem. The pose of the arbs can be specified in various ways; here, we
use one absolute and N −1 relative orientations. However, conversion to, e.g., N absolute
orientations, is trivial given the graph of the arbs.
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Application A: IMT Application B: RT
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Figure 4.1: A unified approach to state estimation and control of systems that perform
dynamic motions. First, a suitable simulation environment of the real-world system in the
form of a pomdp is obtained, either via system modeling, e.g., for imt, or via data-driven
system identification, e.g., for rt. Then, an rnn-based policy is trained in-silico by thou-
sands of forward simulations of randomly drawn reference motions q∗. The simulation
environment supports several domain randomizations to train a robust, plug-and-play
applicable policy that afterward zero-shot generalizes and solves the real-world problem
that performs any motion.
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• F: The transition function F is given by (bio)mechanical models. Typically, via forward
dynamics q̈t = forDyn(qt , q̇t , τt) and subsequent integration, e.g., q̇t+1 = q̇t + ∆tq̈t.

• O: The observation probability O is given by an imu model that computes accelerations,
angular velocities, and magnetometer readings from the trajectory of Cartesian positions
and orientations of each imu, which can be obtained using forward kinematics. Additive,
constant bias terms, and sensor noise are randomly sampled.

• R: Negative mse (Mean Squared Error), i.e., the squared angle error between estimated
pose q̂i(t) and ground truth pose qi(t) ∈ H average over all N bodies. It is given by

rt(st , at) := − 1
N

N∑

i=1

angle (qi(t) ⊗ q̂i(t)
∗)2 (4.1)

where ⊗ denotes quaternion multiplication, ∗ denotes the complex conjugate, and angle

extracts the rotation angle, and is given by angle(q) := 2 arctan
(√

q2
x+q2

y+q2
z

qw

)
. The ground

truth pose qi(t) can be computed from the joint positions using forward kinematics
{qi(t) | ∀i} = forKin(qt).

4.2.2 Applied Methods

This thesis contains four papers (paper A, B, C, and D) that propose methods for solving imt
problems. These proposed methods all rely on an rnn that solves the imt problem by mapping
the available magnetometer-free imu data to the pose of the arbs.

Due to the very general definition of an imt problem via a pomdp in Section 4.2.1, we can
consider imt problems and solutions thereof from a unified perspective. This unified perspec-
tive includes the methodology of the four previously mentioned papers and allows us to discuss
all proposed methods holistically. The solution approach is as follows: A specific imt problem
is given via the pomdp Pimt. A solution candidate to this imt problem is given by an rnn-
based policy πθ. Using this policy, we estimate the expected return E [

∑
t rt] ≈ 1

BT

∑B
b=1

∑T
t=1 rt,

i.e., the pose orientation error, using B ∈ N sequences of simulated inertial and ground truth
data of simulated random motion of arbss. This data is generated by the so called rcmgwhich
combines a physics engine with a broad set of domain randomizations. These domain random-
izations are critical for training a robust policy with calibration capabilities. Each of these
sequences contains either one minute of data at 100 Hz (in paper A and B), or they contain
various time horizons T and sampling rates (in paper C and D).

By iteratively optimizing the return using gradient-based, first-order optimization, the pol-
icy πθ learns to solve the imt problem at hand. This optimization process has two purposes.
On the hand, the optimization process itself allows us to gain insights. We can alter the sim-
ulation of the imt problem (Pimt, sim) while increasing the parameter count of the rnn that
parameterizes the policy πθ in order to draw conclusions about the observability of the under-
lying pomdps under ideal, in-silico conditions. This relies on the concept of observability by
example, see Definition B.2. This first purpose is investigated in paper A, and to this end, a
non-binary system-specific quantity, called the degree of observability, is introduced, along-
side three arguments for proving observability by example.
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On the other hand, the optimization process yields a trained policy. Logically, the second
purpose is to obtain a high-performance imt solution that can be applied to the real-world. In
other words., a state estimator that achieves a high expected return for the real-world prob-
lem Pimt, real. To achieve this, several domain randomization techniques are introduced in the
rcmg that ensure that an optimization of the expected return w.r.t. the simulated Pimt yields
a policy that generalizes to the real world problem. These domain randomizations are, e.g.,
randomized superposition of motions (a form of randomizing the system’s underlying graph
to influence the system’s forward kinematics computations) or randomized imu attachment.
Figure 2.3 shows a subset of the used domain randomizations. This second purpose of solv-
ing challenging real-world imt problems via a successful sim-to-real transfer, is the focus of
paper B, C, and D.

Real-world imt problems are challenging because of (at least) four main challenges (see
Section 2.2.1): the distortion from inhomogeneous magnetic fields, the lack of a known head-
ing in magnetometer-free setups, sparse setups with fewer sensors per segment, and motion
artifacts caused by soft tissue movement. Addressing these challenges can be achieved with
multiple-imu sensor fusion algorithms.

Real-world imtwith a sparse sensor count is achieved in paper B by enabling sparse sensing
via a domain randomization that randomly drops the measurements of the middle imu in
a three-segment kc. Simultaneously overcoming all four challenges is achieved in paper C.
The trained policy of this paper has learned to compensate imu motion artifacts by modeling
imu attachments as a dynamical, mass-spring-damper subsystem. The spring and damping
coefficients of these attachments are randomized. Furthermore, the policy learns a form of
anatomical calibration by simulating data with randomized axes directions of the hinge joints
that interconnect the segments in the kc.

The previous results have involved trained policies that are only applicable to a single imt
problem. Consequently, a different imt problem P̃imt requires computationally-intensive re-
training. To overcome the need for re-training and for expert knowledge to identify the suitable
solution for the specific imt problem, paper D proposes a single policy for a broad range of imt
problems. This policy is powered by a greatly improved, graph-aware rnn architecture, titled
ring, that builds on the architecture, titled rnno, used in paper A and B. This architecture
allows for the training of a single, pluripotent solution applicable to kcs with one, two, three,
or four segments, with or without sparse sensors, and with or without joint axes information.

Example 4.1
Consider imt of an arbswith two bodies that are interconnected by a hinge joint, and both bod-
ies are attached with a 6d imu that measure angular velocity ω1/2(t) and acceleration a1/2(t).
Then, the pomdp is given by

1. st = {qt , q̇t , q∗1:T } and S = Sq × Sq̇ × STq where the joint position vector qt ∈ Sq and joint
velocity vector q̇t ∈ Sq̇, and where Sq := H × R3 × [−π, π) and Sq̇ := R

3 × R3 × R,

2. ot = {ω1(t),ω2(t), a1(t), a2(t)} and O ∈ R12,

3. at = {q̂1(t), q̂2(t)} where A ∈ H2.

For example, qt is given by a 3d orientation from base to body one 0
1q(t), a 3d vector from base

to body one r1(t), and an angle ϕ(t) of the hinge joint that represents the orientation 1
2q(t).
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Figure 4.2: ring is both an ann architecture and, after training on simulated data gen-
erated by the rcmg, it provides a versatile, pluripotent imt solution applicable across a
broad range of challenging problems, designed for use without the need for expert knowl-
edge. Remarkably, ring is trained solely on simulated data, yet zero-shot generalizes to
real-world experiments. License Information

The rcmg generates random motion by drawing joint position trajectories q∗1:T while con-
straining the motion to certain upper and lower bounds on quantities such as, e.g., angular
velocities or linear velocities. As a second step, it uses the transition function F in the form
of a physical simulator and PD control to aggressively track the reference motion q∗ and uses
the observation function O in the form of an imu model to record the imu measurements. In
this scenario, the randomized superposition of motion would result in drawing q∗1:T such that
segment two connects to the base, i.e., using 0

2q(t), r2(t), and 2
1q(t). The random imu placement

domain randomization would place the imus with a randomly drawn offset vector on their re-
spective segment, which enables the trained policy to be applicable without knowledge of the
imu placement. Such domain randomizations enable plug-and-play capabilities.

4.2.3 Selected Method: RING

ring is introduced in paper D, and it is a pluripotent plug-and-play imt solution that elimi-
nates the need for expert knowledge to identify, select, and tune the appropriate method. I.e.,
ring is a single policy πθ that can be applied to a broad range of different pomdps Pimt that
vary significantly in aspects such as the number of attached sensors, or the number of segments
in the kc.

This pluripotency is enabled by its unique ann architecture (see Figure 4.3) that uses a
decentralized network of message-passing rnns. Each segment (or body) in the arbs is a node
in a cg (Connectivity Graph). A cg is an undirected graph where the nodes represent the
bodies that constitute the arbs, and the edges represent its joints. The cg is often specified
via a parent array λ ∈ N

N where λ[i] is the body number of the parent of body i of an arbs
with N ∈ N bodies (Featherstone, 2008). At each node in the graph, the network observes the
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RING

QuaternionMLP
MessageMLP StackedGRUCellConcatenate

Figure 4.3: The architecture of ring consists of a decentralized network (see, e.g., red box)
of message-passing rnns. The previous hidden state ξt-1 and current imu measurements
Xt are processed by ring and the next hidden state ξt and current, predicted pose Ŷt of the
arbs is computed. Internally, a single set of parameters is applied independently for each
body to send and receive messages to adjacent bodies, update the per-body hidden state,
and compute and return the child-to-parent orientation. This design enables ring to be
used with a single set of parameters for imt of arbss with a varying number of bodies.
License Information

local imu measurements and nearest-neighbor messages, and estimates the relative-to-parent
orientation. For all bodies, the nearest-neighbor messages are the messages from the parent
body and all child bodies. If the body has no child bodies or the parent body is the base1, then
these messages are set to zeros. Let λ be the cg of an arbs with N ∈ N bodies, let F ∈ N

be the number of input features per node, let H ∈ N be the half-hidden state dimensionality2,
and let M ∈ N be the dimensionality of the latent messages passed inside the cell based on the
edges in the cg. Then, let ξt-1 ∈ RN×2H be the hidden state of the ring cell from the previous
timestep t − 1, and let Xt ∈ R

N×F be the F inputs for all N bodies at time t. Then, the next
hidden state ξt and prediction Ŷt ∈ HN is obtained by

ξt , Ŷt = ring (ξt-1,Xt ,λ) ∀t (4.2)

with ξ0 = 0.
ring has the parameters of a Message-mlp (Multi Layer Perceptron)-network fθ : RH →

R
M , a stacked-gru-network gθ : R2H × R2M+F → R

2H , and a Quaternion-mlp hθ : RH → R
4.

The step function ring has five consecutive steps, ∀i = 1 . . . N :

1. Messages Mt ∈ RN×M are computed, i.e., Mt[i] = fθ (ξt-1[i, H :])

1The base is assigned the number 0 and serves as the root node in the cg
2The state of two gru (Gated Recurrent Unit) cells each with hidden state dimensionality H is combined into

one hidden state of dimensionality 2H
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2. Messages are passed and latent input X̃ ∈ RN×(2M+F) computed.

X̃[i] = concat


Mt

[
λ[i]

]
, 0 +

∑

c∈µλ(i)

Mt[c],Xt[i]




where Mt

[
λ[i]

]
is 0 if λ[i] = 0 and µλ(i) returns the set of children of body i

3. Hidden state is updated, i.e., ξt[i] = gθ
(
ξt-1[i], X̃[i]

)

4. Unnormalized output Ỹ ∈ RN×4 is computed.

Ỹ[i] = hθ

(
layernorm (ξt[i, H :])

)

5. Normalize to allow interpretation as unit quaternions. One unit quaternion per node.

Ŷt[i] =
Ỹ[i]√∑4

j=1 Ỹ[i, j]2

The parameters θ are shared across all bodies. Hence, the set of parameters of ring is
not influenced by the number of bodies. For example, a single ring network can be used for
predicting the orientations of both two-segment or three-segment kcs even though the number
of bodies and, consequently, the dimensionality of input and output arrays is different, e.g.,
X ∈ RT×2×F compared to X ∈ RT×3×F .

4.3 Application B: Reference Tracking in Unknown Nonlinear
Dynamics

This thesis uses rt in unknown nonlinear dynamics as the second example application for mo-
tion analysis and motion control of systems performing dynamic motions. Finite-time horizon
rt is the task of controlling the output of a system such that it follows a desired reference
signal for a finite duration of time.

4.3.1 Problem Formulation

In order to apply the unified approach for rt, we first formulate the problem as a pomdp.
The pomdp Prt (or to emphasize Prt, real) models the task of manipulating u such that the
system output y tracks a reference motion y∗ in a dynamical system given by Ψ (with unknown
dynamics, see Section 2.3). It is given by:

• S : st = {ξt , y
∗
1:T } where ξt is the (unknown) state of the dynamical system, and y∗ is a

trial-varying and unknown reference motion, also recall that the state is not observed.

• S0: We assume the existence of an unknown, trial-invariant initial state ξ0. The predeter-
mined reference motions can be, e.g., randomly drawn step functions or smooth curves.

• O: ot = {yt , y∗t}.
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• A: at = ut.

• F and O are the unknown dynamics and measurement functions; they are provided by
the dynamical system Ψ .

• R: Negative squared-(tracking)-error-norm, i.e., rt(st) :=
∣∣∣yt − y∗t

∣∣∣2
2
.

4.3.2 Applied Methods

This thesis contains two papers (paper E and F) that consider the problem of rt in unknown
nonlinear dynamics. In general, we can solve such rt problems as defined by Prt, real using
two approaches. The first approach solves it directly in a model-free approach. This would
involve applying the policy πθ and a (small set of) reference motions y∗1:T to the real-world
system and estimating the expected reward. Then, using, e.g., Deep rl, we can optimize the
policy’s parameters (gradient-free rl since drt

dθ is not available). Unfortunately, a model-free
approach has the disadvantage that it is unsafe and typically data-inefficient. It can be unsafe
because it involves applying actions to the real-world system without any prior knowledge or
predictions about the system’s behavior, which can lead to risky or unpredictable outcomes. It
can be data-inefficient because it requires extensive trial-and-error exploration to learn optimal
behaviors.

The second approach solves it indirectly in a model-based approach. This offers the ad-
vantage of increased safety by using a predictive model to simulate or estimate the system’s
behavior before applying actions. It is also more data-efficient, as the model can guide the pol-
icy towards optimal actions with fewer real-world trials, often reducing the need for extensive
exploration and enabling faster learning. Paper E proposes a model-based learning control
approach titled anodec. Paper F then uses anodec on a real-world sr system. First, an-
odec builds a simulation environment Prt, sim by probing the system for input-output data
and then training a differentiable, approximate system model. anodec uses nodes (see Ap-
pendix A.3.1) for the system model. Then, anodec uses first-order optimization (because drt

dθ
is available since neural ODEs are differentiable) to train a policy (or controller) that solves
Prt, sim by using a (large set of) reference motions to estimate the expected reward. anodec
uses nodes for the policy as well. The trained policy is then directly transferred to the real
world. anodec is explained in much more technical details in the next section.

4.3.3 Selected Method: ANODEC

anodec is a model-based learning control approach for output rt in systems with unknown
nonlinear dynamics. It is introduced in paper E. First, anodec builds a simulation envi-
ronment Prt, sim. In this step, it approximates the real-world dynamics Ψ by a node that is
learned from N ∈ N experimental input-output data pairs {(ui(t), yi(t)) | ∀i}. The state of the
dynamical system Ψ is not observed. The neural ODE that approximates Ψ is given by

dξ(m)(t)
dt

= f
(m)
θ

(
ξ(m)(t), u(t)

)
,

ŷ(t) = g
(m)
θ

(
ξ(m)(t)

)
,
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where f
(m)
θ and g

(m)
θ are mlps, u(t) ∈ Rp the network input, ŷ(t) ∈ Rq the network output, and

ξ(m) is the latent state vector in which the node model evolves (dimensionality is a hyper-
parameter). We denote the vector of all parameters of f (m), g(m) by θ(m) and use supervised
learning to optimize these parameters

θ(m)∗ = arg min
θ(m)

E

(u,y)




T∫

0

∥∥∥y(t) − ŷ(t)
∥∥∥

2
dt


 .

As the second step, anodec learns the policy πθ(c) . It uses the trained model with frozen
parameters θ(m)∗ to cheaply simulate the closed-loop of the trained model and policy. During
forward simulation, domain randomization techniques are used to robustify the policy, e.g., by
simulating various output noise levels or adding dropout layers into the model architecture,
thus incorporating stochasticity into the simulation. The policy ut = πθ(c)(o1:t) is given by the
node

dξ(c)(t)
dt

= f
(c)
θ

(
ξ(c)(t), y∗(t), y(t)

)
,

u(t) = g
(c)
θ

(
ξ(c)(t)

)
,

where f
(c)
θ and g

(c)
θ are mlps and ξ(c) is the latent state vector (dimensionality is a hyperparam-

eter; typically slightly smaller than the dimensionality of the node model). Then, anodec
closes the loop between Prt, sim and policy and optimizes the expected return with an addi-
tional regularization term proportional to λ(c), i.e.,

θ(c)∗ = arg min
θ(c)


λ(c)

∥∥∥θ(c)
∥∥∥

2
+ E

PRT, sim,π
θ(c)



∑

t

rt(st)





.

As a final step, the trained policy πθ(c)∗ is applied in the real-world system PRT, real.
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Results and Discussion

“What can be asserted without evidence can be dismissed without evidence.”
– Christopher Hitchens, American writer

This chapter summarizes the major results of the papers included in this thesis (see Section 3).
Application-specific results are discussed in Section 5.1 and Section 5.2, while Section 5.3 holis-
tically discusses sets of results of all papers.

5.1 Application A: Inertial Motion Tracking of Kinematic Chains

This thesis includes four papers that have made contributions to advance imt. These advance-
ments and achievements are outlined in the following.

Figure 5.1: Absolute angle er-
ror of the relative orientation
estimate between two segments
in a double-hinge-joint, three-
segment kc. (Left side) The er-
ror spikes to large values due
to non-observability, whereas
(right side) the trained rnn-
based observer (rnno) accu-
rately tracks the motion at all
times for the observable case.
License Information
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5.1.1 Observability Analysis

Observability (and controllability) are essential prerequisites for successful state estimation
and control. However, the strict definitions of control theory (Bechhoefer, 2005) are often not
applicable and thus of limited use. Instead, definitions by example can be more useful (Brun-
ton and Kutz, 2022). Observability by example states that a dynamical system is considered
observable if, for any input trajectory and initial condition, an observer can reliably estimate
the target state variable from past measurements, see Definition B.2.

To ensure this critical property as we tackle increasingly challenging state estimation prob-
lems, paper A proposes a ml-based method for assessing observability by example, titled
rnno. It combines anns and their universal function approximation guarantees with useful
conjectures1 to draw conclusions about observability under ideal, in-silico conditions.

By applying rnno to assess observability of imt problems, we find the following insights.
For magnetometer-free and sparse imt of a double-hinge-joint three-segment kc, the observ-
ability decreases as the two hinge joint axes’ directions align. This observation follows from the
three proposed conjectures (see paper A) combined with the evidence that the training of the
rnno saturates to a high error value regardless of network complexity for the case of parallel
joint axes’ directions due to sudden error spikes as observed in Figure 5.1. Thus, the realization
of the system with parallel joint axes’ directions is non-observable. Moreover, the realization
with non-parallel joint axes’ directions is observable since the error decreases as network com-
plexity is increased. Albeit not to the same extent as a system realization with orthogonal joint
axes’ directions. Thus, the latter realization has a higher degree of observability, as observabil-
ity is defined by the conjectures from paper A. Finally, we find that a three-segment kc with
a biaxial joint and hinge joint is observable if sensor-to-segment parameters are known, i.e.,
sensor-to-segment calibration is not required. rnno and the simulation software, titled rcmg,
are openly available such that future development of imt algorithms is facilitated by first an-
swering the observability question under ideal, in-silico conditions prior to a prolonged time
investment of the researcher. Additionally, the concepts of rnno are potentially transferable
to other domains with a similar need for observability assessment. Thus, rnno’s applicability
might reach beyond imt since precise simulation environments are readily available in many
domains, e.g., for battery development or autonomous piloting.

5.1.2 Real-World IMT That Overcomes Four Challenges

High-performance imt is complicated by at least four challenges (see Section 2.2.1) that typi-
cally arise in real-world scenarios. They are: 1) dealing with inhomogeneous magnetic fields
distorting magnetometer readings, addressing heading offset due to magnetometer-free ori-
entation estimation, managing sparse sensor setups with fewer sensors than segments, and
compensating for motion artifacts caused by skin-attached imus. In the previous section, we
have shown that the imt problem that involves a double-hinge-joint, three-segment kc with
a sparse set of magnetometer-free imus has a high degree of observability–as long as the axes
directions of the two hinge joints are not parallel. Paper A has shown that this observability re-
sults holds in simulation, i.e., under ideal, in-silico conditions. However ultimately, our focus

1For example, conjecture non-observability: If Psim is non-observable, then the proposed rnno cannot converge to
low residual error, even if the amount of training data is increased, even if the parameter count of the rnn is increased,
and even if the noise and bias levels are reduced.
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Table 5.1: Comparison of rnno’s orientation estimation accuracy when trained on simu-
lated data with or without various domain randomizations. While the mae in simulation
is low in all scenarios, domain randomization techniques are crucially important for the
trained rnno to overcome the sim-to-real gap and achieve a low, real-world mae. Result
from paper B. Training in Pimt, sim, mae evaluated in Pimt, real. License Information

DR 1 (RoM) DR 2(RFK) DR 3 (RG) MAE [deg]

✗ ✗ ✗ 73.6 ± 27.0
✓ ✓ ✓ 3.25 ± 0.29

Column acronyms: Range of Motion (RoM), Randomized Forward Kine-
matics (RFK), Randomized Geometry (RG)

is on real-world motion tracking, and this result may not necessarily translate from simulation
to practical application. This raises a key question: can the rnn-based policy, which has never
been trained on real-world data, be directly applied to solve real-world problems without fur-
ther training? In other words, does it successfully overcome the sim-to-real gap?

Paper B answers this question by showing that the in-simulation trained rnno can zero-
short generalize to real-world data and enable accurate tracking of the three-segment kc from
only two magnetometer-free imus with a mae of < 4 degrees. The proposed domain random-
ization techniques are shown to be essential for successful sim-to-real transfer (see Table 5.1).
While the rnno’s mae remains low across all simulations (P imt, sim), it achieves similarly
low error in real-world scenarios (P imt, real) only when all domain randomizations are ap-
plied. Furthermore, the properties of rapid convergence and long-term stability are critical
for the real-world applicability of rnno. Paper B demonstrates that rnno reliably converges
within two seconds, enabling precise motion tracking immediately after, and maintains stabil-
ity over extended periods. Moreover, it provides the first real-world evidence that the unified
approach is effective, successfully enabling imt to overcome two of the four major challenges
in imt (see Section 2.2.1).

Still, in the world of research, getting two out of four challenges solved is like getting
halfway across the Grand Canyon–it’s progress, but you’re still not making it to the other
side without a miracle. To avoid relying on faith alone, we combine an improved ann ar-
chitecture with further domain randomizations to overcome the four main challenges of imt
simultaneously. In paper C, ring solves an imt problem by accurately tracking the pose of a
three-segment double-hinge-joint kc from a sparse set of two magnetometer-free imus. The
two imus are attached via foam to the segments. This attachment leads to motion artifacts
in the measurements. Sensor-to-segment calibration is required, since the axes’ directions of
the two hinge joints are not known and must be estimated automatically by ring. Despite this
complexity, ring achieves an experimentalmae of ≈ 8 degrees. An example sequence is shown
in Figure 5.2. Overall, the results of paper B and paper C demonstrate that rnno and ring can
be used for plug-and-play imt in magnetically disturbed environments and with sparse sensor
setups, resulting in unprecedented high applicability and usability at unprecedented low cost.
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Figure 5.2: Visualization of ground truth orientations (thin, solid lines) and ring’s pre-
dicted orientation (thick, opaque lines) for one experimental example sequence. The ex-
ample sequence contains the first 15 s of a imt problem involving a double hinge joint kc
with joint axes’ directions in x− and y−direction. ring estimates the orientations from
sparse, magnetometer-free, nonrigidly attached imus and without joint axes direction. Li-
cense Information

5.1.3 A Single, Pluripotent IMT Solution

All previous results rely on trained policies tailored to single imt problems, requiring re-
training and expert knowledge to select the appropriate solution. To address this limitation,
paper D introduces a single, pluripotent solution capable of handling a broad range of imt
problems. This plug-and-play solution, titled ring, eliminates the need for specialized exper-
tise and expensive re-training.

Ring is validated experimentally on real-world motion of a 3d-printed five-segment kc.
In total, ten imus are attached to the kc, and ground truth data is recorded via omc. To
validate ring’s ability to compensate motion artifacts, each segment of the five-segment kc is
equipped with two imus, one rigidly- and one foam-attached. The foam attachment introduces
motion artifacts. The segments of the kc are interconnected by 1d, 2d, and 3d joints, offering
a broad spectrum of imt problems. The experimental validation shows that ring achieves
similar performance (and sometimes outperforms) nine problem-specific sotamethods across
a variety of imt problems (see Table 5.2). Apart from unifying a large body of previous work
with a single, large ann, ring also enables several novel, for-the-first-time applications:

• ring can track a three-segment, double-hinge-joint kc with unknown hinge joint axes’
directions from a sparse set of two magnetometer-free imus with an experimental mae
of 5.37 ± 0.71 degrees.

• ring can track a four-segment, triple-hinge-joint kc with known joint axes’ directions
from a sparse set of two magnetometer-free imus with an experimentalmae of 6.78±1.41.

• ring can successfully mitigate imumotion artifacts due to nonrigidly-attached imus. For
example, ring can track the segment-to-segment orientation of a hinge joint with known
axis direction from two foam-attached imus with an experimental mae of 5.56 ± 2.33
degrees.

In addition to remarkable estimation performance, robustness to differing noise and bias
levels of imus is shown in simulation. Moreover, an experimental validation on datasets involv-
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Table 5.2: Motion tracking accuracy (in degrees) of ring compared to various sotameth-
ods across a variety of imt problems. While previous methods are problem-specific and
Not Applicable (NA) to many imt problems, ring is the only method that accurately
solves all problems. The table contains results for eight imt problems and each problem
is characterized by an image that shows the segments (gray boxes), attached imus (orange
boxes), whether or not the imu is foam-attached (image of foam), dof of joints (green ar-
rows, here all joints are 1d), whether or not the joints’ axes directions are known (small
green arrows), and the orientation estimation target as quaternions. License Information

Problems 1) 2) 3) 4) 5) 6) 7) 8)

Method 0

00
3 3

3
4

3

(1) 2.06 ± 1.03 NA NA NA ≥(5) NA NA NA
(2) 2.25 ± 0.81 ≥(5) ≥(5) NA ≥(5) NA NA NA
(3) 2.09 ± 0.87 ≥(5) ≥(5) NA ≥(5) NA NA NA
(4) 2.56 ± 0.93 ≥(5) ≥(5) NA ≥(5) NA NA NA
(5) 1.61 ± 1.04 → 19.3 ± 8.02 NA 9.20 ± 2.31 24.9 ± 17.6 NA NA
(5)+(6) ↑ 3.32 ± 2.12 NA NA ↑ 7.00 ± 1.57 NA NA
(5)+(7) ↑ 4.15 ± 2.05 NA NA ↑ 8.00 ± 2.78 NA NA
(5)+(6)+(8) ↑ → 3.18 ± 2.05 NA ↑ 8.50 ± 2.60 NA NA
(5)+(7)+(8) ↑ → 4.06 ± 2.23 NA ↑ 7.90 ± 2.48 NA NA
(9) NA NA NA 5.60 ± 2.35 NA NA NA NA
ring 2.13 ± 0.91 3.52 ± 1.00 3.92 ± 1.40 4.14 ± 0.53 7.59 ± 2.85 5.56 ± 2.33 5.37 ± 0.71 6.78 ± 1.41

Methods: Weber et al. (2021)(1), Madgwick (2010)(2), Mahony et al. (2008)(3), Seel and Ruppin (2017)(4), Laidig and Seel (2023)(5), Laidig et al. (2017)(6),
Lehmann et al. (2020b)(7),Olsson et al. (2020)(8), Bachhuber et al. (2023a)(9)
≥ (i) refers to the mae of being expected to be larger or equal than for method (i)
↑ or→ indicate that the mae is equal to the mae of the cell above or to the cell to the right

ing various imu manufacturers shows consistent estimation performance and further demon-
strates ring’s robustness to imus with different noise and bias properties.

To further strengthen ring’s real-world practicality, paper C proceeds by showing that
ring is real-time capable of up to ≈ 1000 Hz on desktop-grade hardware and that it provides
consistent estimations across a broad range of sampling rates (60 Hz to 200 Hz). Notably, esti-
mation accuracy only begins to degrade at sampling rates below 60 Hz, which remains accept-
able as typical imu sampling rates are generally higher.

We also find a purely ml-based result: the decentralized approach of ring provides an ad-
vantageous, structural prior that aids network training compared to more typical, centralized
approaches such as, e.g., rnno; a vital insight with possible implications for other domains.
This advantage is observed even if only the solution of a single, specific imt problem is re-
quired.

All code2 and data3 is made openly available.

2https://github.com/SimiPixel/ring
3https://github.com/SimiPixel/diodem

https://github.com/SimiPixel/ring
https://github.com/SimiPixel/diodem
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Optimal-Tuning Baseline Controller

Model-Knowledge Baseline Controller

Neural ODE Controller

Figure 5.3: anodec’s rt performance relative to the optimal-tuning controller baseline
and model-knowledge controller baseline on all combinations of four systems and five
reference signal distributions. For each combination of system and reference source, the
25%/50%/75%−percentiles are obtained from 100 randomly drawn references from the
distribution. anodec achieves an on average ≈ 30 % / 17 % / 7 % / 40 % lower median
rmse across all validation and test combinations compared to the optimal-tuning con-
troller baseline / model-knowledge controller baseline / the best out of the two baselines
/ the worst out of the two baselines. License Information

5.2 Application B: Reference Tracking in Unknown Nonlinear
Dynamics

This thesis includes two papers that have made contributions to advance rt in unknown non-
linear dynamics. These advancements and achievements are outlined in the following.

5.2.1 Extensive In-Silico Validation of ANODEC

anodec is a novel model-based learning control method for output rt in systems with un-
known nonlinear dynamics. The method was validated in simulation using four systems and
500 reference motions sourced from five distinct distributions (see paper E). In nearly all simu-
lated scenarios, anodec consistently outperforms two classical control methods, achieving an
average of approximately ≈ 30%/17% lower median tracking rmse (see Figure 5.3).

The model-based approach of anodec is vital for its remarkable data efficiency. This ap-
proach enables anodec to require only 150 s seconds of input-output data for double-pendulum
systems and 270 s seconds for the other cases, without needing any state information. To ad-
dress concerns regarding the generalizability ofml-based solutions, we evaluated the model us-
ing 400 reference motions outside the training distribution, including double steps and smooth
curves.

The four simulated systems include three spring-damper systems, double-pendulum dy-
namics, and a system with Ackermann steering. The two baseline control methods consist of
1) an optimally tuned pid controller and 2) a model-knowledge-based controller that assumes
perfect knowledge of the system’s local linearization, utilizing pole placement and grid search
to design a fifth-order transfer function controller.
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hinge joint

lever armSetup 2

Setup 1

upper arm (fixed)

upper arm (fixed)

lower arm

motion

mass

gravity

PAM

pressure control

Figure 5.4: Two experimental setups
of a pneumatic arm with a single dof.
Two pams (black tubes) are used as
an antagonistic pair to control the
arm’s forces and position in both se-
tups. The upper setup shows the sim-
plest configuration without the influ-
ence of gravity and external load. The
lower setup is loaded with an external
weight of 0.6 kg, with a lever arm of
0.25 m oriented against gravity. Both
arms are fixed to the ground to pre-
vent undesired movements. License
Information

Notably, anodec reduces tracking errors, effectively dampens oscillations, and achieves
a more controlled and faster response to reference steps compared to the baseline methods.
A video demonstration of anodec’s performance is available online4, and the code is openly
accessible5.

5.2.2 Experimental Validation using a Soft Robotic System

Having validated anodec on various simulated systems, we now turn to a real-world sr sys-
tem, addressing both the limitations of simulation-based validation and the unique challenges
of sr control. Paper F uses anodec and applies it to an experimental sr system that consists
of an arm with two pams.

The experimental system is considered in two different setups (see Figure 5.4), and for both
anodec successfully learns to perform agile, non-repetitive motions. It achieves this while re-
quiring only a parsimonious amount of input-output data. As shown in Table 5.2, anodec con-
sistently outperforms a manually tuned pid controller baseline across three reference motion
distributions. For example, for the experimental Setup 1, anodec achieves an approximately
45.9% lower rmse tracking error on average, requiring only30 s of experimental input-output
data. Moreover, anodec designs robust and stable controllers, even under heavily disturbed
trials, as illustrated in Figure 5.5.

5.3 Holistic Discussion

“The whole is greater than the sum of its parts.”
– Aristotle, Greek Philosopher

This section presents insights that become only apparent when multiple results are considered
in combination. By integrating results from the state estimation task of imt of kcs with sparse

4https://youtube.com/watch?v=tttkFFD81Qw
5https://github.com/SimiPixel/chain_control

https://youtube.com/watch?v=tttkFFD81Qw
https://github.com/SimiPixel/chain_control
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Table 5.3: rt rmse (in degrees) of pid and anodec for three reference signal distributions
and two systems: Steps, double steps, and cubic splines. For each distribution, N distinct
reference signals are drawn and used to estimate the rmse and one standard deviation.
The two systems, Setup 1 and 2, are shown in Figure 5.4. License Information

References pid anodec

Setup 1
Steps (N = 2) 12.89 ± 6.14 10.03 ± 4.93
Double Steps (N = 2) 12.86 ± 2.66 11.08 ± 1.37
Cubic Splines (N = 12) 10.01 ± 1.44 4.48 ± 1.11

Setup 2
Steps (N = 2) 4.00 ± 0.45 5.54 ± 0.53
Double Steps (N = 2) 9.50 ± 4.03 6.81 ± 0.75
Cubic Splines (N = 4) 4.56 ± 0.81 5.01 ± 0.79

Figure 5.5: Tracking perfor-
mance of anodec in two dis-
turbed trials. In the first trial
(top), there are two small distur-
bances (poking the end effector
with a stick), whereas in the sec-
ond trial (bottom), there are four
large disturbances (grabbing and
briefly holding the end effector).
anodec designs feedback con-
trollers that remain stable and re-
ject external disturbances. Li-
cense Information
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sensor setups and unknown sensor-to-segments attachments, and the control task of rt in
unknown nonlinear dynamics, it derives broader, more generally applicable conclusions.

5.3.1 On the cost of Plug-and-Play Applicability

The broader applicability of ring over rnno for challenging imt problems comes at the cost of
increased training workload and a performance hit, particularly in terms of slower initial convergence
and occasional instability in predictions.
rnno enables real-world sparse imt but ring is a superior solution because it outperforms

rnno on the same task (see Table 5.2) and because it is applicable to even more challenging
imt problems (see Table 5.2 and paper C). According to Section 4.1.3, the broader applicability
of ring compared to rnno incurs the cost of a) an increased workload on the ann to be
trained, and b) a performance hit due to the requirement of implicitly learning forms of online
calibration that enable plug-and-play capabilities in the first place. a) is acceptable and mainly
increases the technical requirements for successful network training. This is evident from
the fact that, e.g., in paper B, the training of rnno is finished after ≈ 750 epochs, whereas in
paper D the training of ring is finished after ≈ 5000 epochs. b) is unfortunate, and it manifests
in the following two behaviors. First, the time for initial convergence of ring is higher than for
rnno. rnno consistently converges to low errors within the first two seconds, whereas ring
occasionally requires up to ten seconds before its predictions are stable and accurate. Second,
the prediction of rnno is more stable and less nervous. ring ’s predictions can occasionally
drift to wrong estimates (see, e.g., Figure 5.2 right subplot). The author hypothesizes that the
combination of short-term, smooth gru cells with a data stream that can become temporarily
non-observable, i.e., due to the broad spectrum of training scenarios, there exist two scenarios
with a locally (w.r.t. the specific motion) identical measurement data stream yet two different
and competing prediction data streams. The usage of lstm (Long Short Term Memory) cells or
an alternative Transformer architecture inside of the ring Cells (see paper D) might alleviate
the latter issue. A similar issue has also been observed in paper F where the even more short-
termed, alternative rnn architecture of nodes can struggle with keeping the hysteresis effects
of the sr in its internal memory.

5.3.2 Random Reference Motions and Proactive Versus Reactive Behavior

For both imt and rt, the trained policy maximizes the expected reward based on randomized refer-
ence motions. imt requires multiple reference motion distributions for optimal transfer, and proactive
behavior is undesirable for state estimation due to its non-influence on the system. In contrast, rt
can generalize from only step functions, where proactive behavior benefits control tasks.

For both imt and rt, the trained policy (rnno, ring, or anodec) maximizes the expected
reward, where the expectation includes the reference motions that are given via trajectories
q∗1:T or y∗1:T for imt or rt, respectively. Therefore, in order to obtain a trained policy that is
real-world applicable, the reference motion must be either known a-priori (e.g., ilc assumes
a known reference signal) or, according to Section 4.1.3, the reference motion must be ran-
domized. Interestingly, for state estimation and imt, the rcmg generates a broad range of
reference motions to include qualitatively identical to the unknown, real-world motions. This
is also evident by the fact that for the training of ring in total four different reference motion
distributions are needed (and a single distribution does not suffice) for optimal transfer (see
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paper D). On the other hand, for control and rt, a random set of non-physical step functions
are sufficient for obtaining a trained policy that generalizes to, e.g., smooth reference motions,
as can be observed in Figure 5.3. In fact, for control, the reference motions provided as step
functions offer a clear pattern that allows for, in addition to reactive feedback control, learn-
ing of proactive behavior in the form of a dynamic feedforward signal. This can be seen in,
e.g., anodec’s behavior for double steps reference in the double-pendulum system (see Sec-
tion 5.2.1).

In contrast, proactive behavior is undesirable for imt since the action does not influence
the system. Hence, proactive behavior can only be enabled by statistical patterns such as, e.g.,
typical human motion patterns. To some extent, this may also be attributed to the cost of plug-
and-play applicability where we desire a solution that requires no prior knowledge of the types
of motions to be performed, i.e., that is not restricted to, e.g., human gait motion.

5.3.3 Smooth Problems and Smooth Solutions

Unsurprisingly, smooth problems can be solved with smooth solutions.
In the absence of discontinuous events, such as collisions, both application domains ad-

dressed in this thesis–namely, the tasks of imt and rt–can be characterized as smooth prob-
lems. In this context, “smooth” refers to systems with continuous dynamics that satisfy Lips-
chitz continuity, ensuring bounded rates of change and well-defined behavior across their state
spaces.

The task of imt relies on the dynamics of arbs, which exhibit smooth dynamical behavior.
For motion control, smoothness characterizes the dynamics of all systems under consideration
in this thesis for the rt in unknown nonlinear dynamics. Smoothness extends to the policies
that used to solve both example application. For imt, the rnn-based architectures, specifi-
cally rnno and ring, as well as the node-based solution anodec for motion control, are all
inherently smooth (see Appendix A).

However, although smoothness is beneficial during the training of anns, it can limit the
trained network’s expressiveness and adaptability. Specifically, problems involving non-smooth
or hybrid dynamics can only be addressed sub-optimally by strictly smooth solutions, as their
inherent inertia hinders their ability to react swiftly to abrupt changes. Second, even for inher-
ently smooth problems, non-smooth solutions can offer significant advantages, particularly for
tasks requiring online calibration or the enforcement of hard constraints. For instance, in imt,
the physical connection between two rigid-body segments interconnected by a rigid joint must
always be maintained. If the solution is restricted to smooth dynamics, such constraints can
only be approximated as soft constraints, potentially compromising accuracy and robustness.

This represents the author’s second conjecture for the sub-optimal performance of ring
compared to the problem-specific rnno, as outlined in Section 5.3.1. The hypothesis is that,
at any given moment, there is a non-zero decay of all internally learned soft constraints, which
undermines their effectiveness (see Example A.4).

5.3.4 Causal, Online Solutions

rnns are practical, real-time-capable solutions.
All solutions derived in this work are based on unidirectional rnns (excluding bidirec-

tional rnns; see Appendix A.2), ensuring their applicability in real-time and causal scenarios.
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Applicability in real-time and causal scenarios is critical for motion analysis and motion con-
trol because these tasks require immediate responses to continuously incoming data, ensuring
accurate state estimation or control actions without delay. Causality ensures that decisions are
made based solely on current and past information, which is essential for practical deployment
in real-world systems.

In the case of motion analysis, the unified approach has been demonstrated to yield real-
time capable solutions. For instance, rnno has been demonstrated to function effectively in
online applications in paper B, while ring has been similarly validated in paper C and paper D.
Notably, in paper C, ring is shown to operate in real-time at rates up to approximately 1000 Hz
on a desktop-grade CPU (Intel Xeon, single-core, 2.2 GHz) and to adapt across a wide range of
imu sampling rates without requiring retraining.

Similarly, in the case of motion control, the unified approach is used to develop the learning
control method anodec which designs feedback controllers. In paper F, anodec is validated
for sr control in real-time at 100 Hz using desktop-grade hardware. Higher sampling rates are
readily achievable since, after anodec completes the controller design, only the rnn repre-
senting the feedback controller (typically with a parameter count on the order of 100˘1000)
needs to be applied in real-time.

5.3.5 The Role of Excitation

The simulated motion distribution and its excitation levels significantly impact the solution’s quality
and real-world applicability.

The proposed unified approach leverages rnns trained in simulation. A key insight for
both motion analysis and motion control is that the specific motion to be estimated or con-
trolled can be treated as an unknown factor, allowing domain randomization to address this
uncertainty. Generalization across various motions is achieved by simulating a diverse range
of dynamic movements. This strategy applies to both state estimation and control. For state
estimation, it involves generating random motions with sufficient excitation–where excitation
refers to motions with enough variation or activity to fully capture the system’s dynamic be-
havior. For control, it involves generating random reference motions that the system should
perform. However, this approach inherently couples the resulting solution to the distribution
of the simulated motions.

This has potential consequences for the obtained solution (the trained rnn): 1) the solution
may develop a bias toward predicting (or hallucinating) trajectories of state estimates or control
inputs with specific characteristics, that are prevalent in the training data; 2) the solution may
lose robustness or fail entirely if the excitation decreases or if the system is no longer uniformly
excited.

Solutions developing a bias has been observed in the development of the proposed meth-
ods. - a key insight to overcome was for state estimation to not only randomize the motion
generation by drawing motion e.g. by drawing motion that falls within certain angular veloc-
ity bounds but also to randomize the randoimization process. This means e.g. randomizing
the applied interpolation or defining multiple distinc motion distributions from which then
the motion is raondly drawn per sequence or the motion transitions from one distribution to
the other within the sequence - for control, the simulated reference motion bias is espiaclly
ciritical w.r.t. the stability of the controller. If the reference motions are always exicting the
controller would have no desire to learn long-term stability. A key insight to overcome this



62 5 Results and Discussion

was to simulate scenarios such as steps where the reference was held constant for an extended
period of time.

A motion bias in solutions has been observed during the development of the proposed
methods. For state estimation, a key insight to address this was not only to randomize mo-
tion generation (e.g., by drawing motions within specific angular velocity bounds) but also to
randomize the randomization process itself. This involved strategies such as randomizing in-
terpolation methods, defining multiple distinct motion distributions, and randomly selecting
motions from these distributions per sequence. Additionally, transitions between distributions
were introduced within a sequence to further diversify training data. For control, bias in sim-
ulated reference motions was particularly critical for ensuring the controller’s stability. If the
reference motions always excited the controller, it would lack the incentive to learn long-term
stability. To overcome this, scenarios were simulated where the reference remained constant
for extended periods, such as during steps, encouraging the controller to handle stability in
less dynamic situations.

The second consequence is a fundamental challenge. Recall that, for imt, the developed
solutions enable plug-and-play applicability by reducing the number of required sensors or
improve robustness by eliminating reliance on magnetometer measurements. This is possible
because the rnns learn to compensate for the lack of information using constraints. Typically,
these constraints are equations that define how imu measurements must relate to one another
based on a kinematic model of the kc. However, excluding the magnetometer, imus measure
changes–specifically, changes in angular velocity and specific force (combining changes in po-
sition and gravity). As a result, the constraint becomes degenerate when there is no motion
or excitation, leading to trivial zero solutions or a lack of uniqueness, where any solution is
trivial.

This problem–originating from either a lack of excitation or a lack of homogeneity in
excitation–has manifested in two ways in this work. First, when overall excitation is reduced,
the derived solutions (e.g., ring) can maintain accurate estimates over shorter time windows.
However, if the lack of excitation persists, the estimates begin to drift and become inaccurate
over time. Second, a lack of homogeneity in excitation arises, e.g., when the system predomi-
nantly rotates with respect to the Earth frame either in the horizontal or vertical plane. This
inhomogeneity in projecting the gravity component into the accelerometer readings can lead
to inaccuracies in magnetometer-free imt. While this issue does not affect ring, it poses a
significant challenge for extending ring to 2d or 3d joints. In these cases, an extended variant
ring has shown to provide inaccurate estimates under inhomogeneous excitation conditions.
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Summary, Conclusions, and Future Work

“If we knew what it was we were doing, it would not be called research, would it?”
– Albert Einstein, theoretical physicist

In this last chapter, we revisit the contributions of this thesis, summarize them, and discuss
their impact. We will also revisit the aim of the thesis and finish by discussing possible direc-
tions for future work.

6.1 Summary and Conclusions

This thesis proposes and validates a unified approach, which enables the efficient solution of
motion analysis problems on the one hand and motion control problems on the other. The
unified approach uses simulation environments of the problem-to-be-solved to train rnns on
large amounts of simulated data. Extensive domain randomizations enable the trained rnns
to generalize to real-world problems without additional data or adjustments. Training across
very different simulation scenarios–including those traditionally treated as separate problems–
provides a single pluripotent solution.

This unified approach is validated for two representative application examples: for state
estimation tasks in imt of kcs with sparse sensor setups and unknown sensor-to-segment at-
tachments, on the one hand, and for rt control in unknown nonlinear dynamics, on the other.
For both motion analysis and control, the unified approach has proven effective and it has re-
sulted in three distinct methods (rnno, ring, and anodec). These methods have advanced
the respective research fields in a variety of aspects and these achievements have resulted in
six publications that are included in this thesis.
rnno, proposed in paper A, has enabled to address the foundational question of observabil-

ity in imt (addressing Research Gap A), an essential property for ensuring feasible, consistent,
and safe state estimation. rnno is both the name of an rnn architecture as well as the name of
a novel method for assessing the observability property of simulated imt problems. rnno is
based on the concept of observability by example, and it is used to derive previously unknown

63
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results about the observability properties of a three-segment kcwith sparse1 imu setup. rnno
provides answers to the question, which kcs are observable under which conditions. Specifi-
cally, it is shown that the degree of observability decreases as the joint axes’ directions of the
two hinge joints align. rnno and the simulation software, titled rcmg, are openly available
such that future development of imt algorithms is facilitated by first answering the observ-
ability question under ideal, in-silico conditions before a prolonged time investment of the
researcher. Additionally, the concepts of rnno are potentially transferable to other domains
with a similar need for observability assessment. Thus, rnno’s applicability might reach be-
yond imt since precise simulation environments are readily available in many domains, e.g.,
for battery development or autonomous piloting.

Building upon the observability framework established in paper A, paper B extends the
rnno to real-world scenarios by proposing novel domain randomization techniques that ef-
fectively close the sim-to-real gap. Specifically, paper B demonstrates real-world magnetome-
ter-free and sparse imt of a three-segment kc (addressing Research Gap C). After rapid initial
convergence, rnno can achieve long-term stable tracking errors of < 4 degrees. These results
constitute the first experimental validation of the unified approach and demonstrate that it can
be used for plug-and-play imt in magnetically disturbed environments with minimal efforts
and thus achieve unprecedented high applicability and usability at unprecedented low cost.

In paper D, the unified approach is used to develop ring, a plug-and-play pluripotent
imt solution that fundamentally changes how imt problems are solved. While conventional
imt solutions typically rely on expert knowledge to select and configure a problem-specific
method, ring offers an easy-to-use solution to a broad range of imt problems (addressing Re-
search Gap D). It is shown that ring–a single ann–outperforms and thus unifies nine sota
methods. Moreover, ring enables several for-the-first-time applications. For example, it suc-
cessfully tracks a four-segment kc from a sparse set of two magnetometer-free imus with an
experimental mae of < 7 degrees. Moreover, ring can effectively compensate motion arti-
facts2, outperforming sota methods that are combined with low-pass filtering (addressing
Research Gap B). In addition, paper C then demonstrates that ring can tackle–for the first
time–a highly complex imt problem that combines four key challenges: 1) magnetometer-free
sensing, 2) sparse sensing, 3) sensor-to-segment calibration3, and 4) motion artifacts. This is
demonstrated by ring successfully tracking a three-segment kc from two, nonrigidly-attached
imus with an experimental mae of ≈ 8 degrees. Paper C also shows that ring provides consis-
tent estimates across a broad range of sampling rates and that it is real-time capable at > 500 Hz
even on low-end hardware. Overall, ring eliminates the need for expert knowledge, and its
introduction of ring not only makes imt more accurate and less restrictive in established do-
mains but also facilitates the accessibility of imt technology by non-expert users and broadens
its applicability to previously untapped domains.

Having demonstrated the unified approach’s validity for state estimation, the learning con-
trol method anodec (see paper E) shows the applicability of the unified approach for mo-
tion control. anodec is a learning control method that designs controllers in nonlinear sys-

1sparse methods use a limited number of sensors to infer information about a system; in the context of inertial
motion tracking this refers to having less than one sensor per segment

2the effect that nonrigidly-attached sensors measure different values compared to rigidly-attached sensors if the
system is in motion

3the process of aligning the orientation and position of the inertial sensors with the corresponding body seg-
ments they are intended to track
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tems without requiring prior model knowledge or extensive manual tuning (addressing Re-
search Gap E). It efficiently learns from a parsimonious amount of input-output data and can
control complex systems despite nonlinearities like hysteresis effects. In paper E, anodec is
validated on diverse simulated dynamics, including double pendulum dynamics and Acker-
mann steering, achieving superior performance compared to baseline control approaches such
as manually tuned pid controllers and transfer-function-based control. Furthermore, it has
demonstrated effectiveness in agile control of a pneumatically driven robotic arm (see paper F).
The validation on systems with diverse, complex dynamics demonstrates anodec’s versatility
and broad applicability to challenging control problems. It enables practical real-time control
across domains through its automatic, modeling-free approach that minimizes the need for
human expertise.

In paper F, anodec enables a real-world, pneumatically driven robotic arm to learn to
perform dynamic motions automatically. anodec demonstrates its exceptional data-efficiency
requiring only 30 seconds of experimental interaction time to outperform a manually-tuned
pid controller. anodec’s automatic and modeling-free nature is especially beneficial for these
robots due to their complex nonlinear dynamics, hysteresis, and viscoelastic properties, which
pose challenges for classical and model-based control approaches. To further strengthen the
validity of anodec and the practicality of the robotic arm, these results are confirmed for a
modification of the sr (attaching a heavy mass and re-orienting the arm to move in the vertical
plane) that significantly alters the dynamics. These results demonstrate anodec’s ability to en-
able efficient, real-time control of pneumatically driven robotic arms, even under significantly
altered dynamics, making the technology more accessible and practical. Its modeling-free,
data-efficient approach reduces dependency on expert knowledge, broadening its applicability
to complex, nonlinear robotic systems.

The variety of contributions and their associated publications underscore the validity of
the unified approach for both state estimation and control of systems performing dynamic,
agile motions. For state estimation, the work demonstrates that rnns trained in simulation
can achieve zero-shot generalization to reality, enabling real-time sensor fusion of imu data
for accurate motion tracking of fast-moving kcs. Similarly, for motion control, it is shown
that a conceptually similar approach can train rnns to effectively actuate systems in real-time,
achieving precise tracking of dynamic reference motions.

The code of (rcmg , rnno, and ring)4 and anodec 5, and the data6 are made openly
available for fast adoption.

These findings confirm the predicted impact of the unified approach outlined in Section 1.5).
The approach has led to novel solutions for assessing observability, enabling sparse and magne-
tometer-free imt, compensating for motion artifacts, and facilitating data-efficient control of a
pneumatically driven robotic arm. By leveraging automatically generated simulated data, the
approach reduces the need for extensive real-world data collection while lowering modeling ef-
forts through data-driven, ann-based methods instead of traditional model-based approaches.
Robustness is ensured through domain randomizations, enabling self-calibration and minimiz-
ing reliance on manual system identification.

These innovations directly align with the goal of reducing the workload for engineers and
fostering the development of plug-and-play solutions that require minimal expert knowledge.

4https://github.com/Simipixel/ring
5https://github.com/Simipixel/chain_control
6https://doi.org/10.7910/DVN/SGJLZA

https://github.com/Simipixel/ring
https://github.com/Simipixel/chain_control
https://doi.org/10.7910/DVN/SGJLZA
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The versatility of the approach is exemplified by ring and anodec. ring represents a break-
through in imt with the potential for practical real-world implications, such as allowing pa-
tients to wear fewer sensors while enabling clinicians to focus on patient care instead of time-
consuming calibration. anodec offers the possibility for personalized medical devices that are
both efficient and adaptive. For instance, anodec can be applied to assistive robotic devices
like exoskeletons used in rehabilitation, where it facilitates motion control that quickly adapts
to the patient’s unique dynamics, delivering precise and responsive support tailored to their
needs.

Despite the significant advancements outlined in this thesis, specific challenges remain,
particularly in handling more diverse sensor configurations, including other modalities such
as optical measurements, and enhancing applicability to real-world human motion capture.
These challenges form the basis for future work directions, discussed in the next section.

6.2 Future Work Directions

“One must stop conducting research before one has finished. Otherwise, one will never stop and
never finish.”

– Barbara Tuchman, historian

Random Motion and Domain Randomization of Biomechanical Models

The imt methods developed in paper A, B, C, and D rely on training data generated by simu-
lating random mechanical joint motions. To further enhance imt performance for real-world
human motion capture, training anns in simulations that use biomechanical models could
be beneficial, as less accurate modeling and broad domain randomizations often compromise
prediction performance (see Section 2.1).

However, the applicability of the unified approach also requires the ability to generate
random motions. For biomechanical models, this is slightly more complex than mechanical
models, as the joints in biomechanical models are actuated via tendons that contract upon
nerve stimuli. For random motion generation, treating tendons (and secondary joint degrees
of freedom) as passive force generators may prove beneficial, actuating only the primary dofs.
For instance, the human knee is usually modeled as a hinge joint with a coupled translational
degree, actuated by an antagonistic tendon pair. Instead of simulating muscle stimuli, pid
control could be applied to the hinge’s rotational degree, allowing the translational degree and
tendons to follow naturally. This framework should allow for the generation of natural random
motion in biomechanical models.

GaitTracker: A Specialized Flavor of RING for Lower Extremities

While ring is a general-purpose method, tailored solutions may yield better performance for
specific tasks. Building on the ideas from Section 6.2, a specialized variant of ring, potentially
titled GaitTracker, which focuses on tracking lower extremity movements (hip, femur, tibia,
and foot) using a sparse number of magnetometer-free imus, would be beneficial.

The ring architecture can be used from paper A and combined with a feature-rich sim-
ulation environment of lower extremities. MyoSuite offers a diverse range of biomechanical
models, including models of lower extremities, upper body, arms, and hands (Caggiano et al.,
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2022). MuJoCo7 efficiently simulates these models, making them highly suitable for training
of GaitTracker.

Multi-modal IMT

For the task of motion analysis, combining data from multiple sources–such as one or several
cameras positioned at various perspectives and numerous imus–provides a more comprehen-
sive understanding of the motion. Each sensor type offers complementary information; cam-
era data captures a visual understanding of the attachment of imus, while the imus provide
detailed angular velocity and acceleration data. The challenge lies in fusing these diverse data
streams to achieve the highest possible motion-tracking accuracy.

The unified approach and its derivatives, such as ring, can be extended to fuse, yielding a
hybrid solution that fuses visual and inertial information. The required training data is readily
available since modern simulation environments, e.g., MuJoCo, natively support rendering the
physical scene, enabling detailed simulation of camera data. Domain randomizations of cam-
era angles, perspectives, and dynamic ranges are straightforward. This hybrid solution could
be highly beneficial for enabling ring to perform advanced sensor-to-segment calibration of
imus, as accurate calibration is essential for reducing misalignment errors between the sensor
readings and the actual physical movements. Moreover, the imus could be physically enhanced
by printing orientation markers on their housing, enabling the ring network to identify seg-
ment alignment and sensor-to-segment calibration in real-world scenarios. This setup offers
additional potential for trained networks’ plug-and-play capabilities while enhancing tracking
performance in sparse sensor setups.

OMC Motion Artifact Reduction

For motion analysis, we typically estimate the motion of an arbs from sensor data. For hu-
man motion analysis and using imus, this corresponds to estimating the skeleton motion from
wearable inertial sensors.

However, in real-world conditions, the attachment of these sensors violates the rigid body
assumption8. The sensors are nonrigidly-attached to the skin, introducing motion artifacts
in the motion estimates, due to relative motion between sensor and skeleton during dynamic
motions. In paper D, these motion artifacts are modeled, corresponding imu data simulated,
and, after training, ring has learned to compensate real-world motion artifacts effectively.

However, not only imus are nonrigidly attached to the human skin. omcmarkers are simi-
larly attached to the skin, and thus, motion artifacts are entering the motion estimates obtained
via gold-standard omc systems. The unified approach could be used to learn anns that fil-
ter the omc position trajectories and reduce motion artifacts by simulating large amounts of
motion-artifacts-prone data. The obtained ann would result in a broadly applicable solution,
improving the motion tracking performance of existing omc systems.

7MuJoCo stands for Multi-Joint dynamics with Contact, a general purpose physics engine (Todorov et al., 2012)
8The rigid body assumption refers to the simplification that an object does not deform under force, meaning

that the distances between all points on the object remain constant, allowing only for translation and rotation as
modeled by the joints, without any internal structural changes.
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Figure 6.1: Finetuning can compute-efficiently adapt a pretrained version of ring to a new
data distribution. (Left subplot) The training of ring as published in paper D and the ex-
perimental validation performance of the trained ring on high-noise imu data. (Right
subplot) Additional training on high-noise simulated imu data increases ring ’s perfor-
mance on the experimental validation data with 1500 training epochs compared to the
> 4000 epochs required for ring ’s training from scratch.

An IMT Foundation Model and RING Finetuning

Foundation models are large-scale pretrained models that serve as the basis for a wide range
of downstream tasks. These models are trained on vast amounts of data. The key idea behind
foundation models is that they can learn general-purpose representations of data, which can
then be adapted to specific tasks with minimal additional training. Examples include GPT
(used in ChatGPT), BERT, RoBERTa for natural language processing, and models like CLIP
and Dall-E for vision-language tasks.

Finetuning is the process of taking a pretrained foundation model and adapting it to a
specific task or domain by training it further on a smaller, task-specific dataset. Finetuning
allows the model to adjust its general-purpose knowledge to suit better the nuances of the
specific task to which it is applied.
ring is a foundation model for imt in the sense that it is trained on vast amounts of (sim-

ulated) data and that it can be applied to a broad range of imt problems. In Figure 6.1, ring
is finetuned to achieve a lower validation error on especially high-noise imu data. However,
ring is not a foundation model because it is trained to predict orientations and not practical,
general-purpose representations for downstream tasks. For example, in its current state, ring
can not be easily used for explicitly estimating the imu calibration parameters, which requires
the prediction of values in units of meters. The latter problem would require complete retrain-
ing of ring and can not easily be achieved by finetuning.

Two distinct future work directions are worth investigating. First, in its current state, ring
can already be finetuned (as seen in Figure 6.1) using simulated data. Using experimental
data for finetuning to achieve an even better sim-to-real transfer is intriguing. Second, future
work should investigate the possibility of a general-purpose ring foundation model for imt in
combination with task-specific network heads (or decoders) and finetuning (if required). The
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idea is as follows: There is a single, (very) large ann that processes all imu data and task-
specific prior knowledge to update and return a high-dimensional, highly informative latent
state. This latent state is then processed by task-specific, feedforward anns (network heads)
that decode the latent state to the task-specific output spaces. This ensemble of foundation
model and task-specific heads is then trained end-to-end on as many different tasks as possible.
This decomposition has two key advantages: 1) if in the future a new downstream task emerges,
then either a pretrained or new network head is finetuned in combination with the frozen
foundation model, and 2) if in the future the data distribution changes (e.g., a new oddly-
behaving imu becomes available) then the foundation model can be finetuned with frozen
network heads. The latter is because the latent state contains already processed higher-level
information that stays identical; thus, the network heads do not require updating. Overall,
both scenarios significantly reduce the computational demands required for network training.

Learning to Learn: ANODEC’s Evolution to a Zero-data Solution for Control

Recall from Section 4.3.3 that anodec works in a two-step approach. First, it approximates
the real-world dynamics Ψ by a node that is learned from N ∈ N experimental input-output
data pairs {(ui(t), yi(t)) | ∀i}. The selection of input trajectories is critical for optimal system
identification and requires expert knowledge. In addition, recording the data pairs can be
time-consuming.

In contrast, the proposed learning-to-learn approach entirely and automatically handles
this system identification step, which previously involved selecting input trajectories and man-
ually recording training data. To this end, instead of two anns, one for system identification
and one for control, the learning-to-learn approach uses two anns that together form the con-
troller; a trainable ann fθ that predicts the required reference motion that should be applied
to the closed-loop system for optimal system identification by the second, trainable ann πθ

that controls the system. This controller combination is trained in simulation to perform online
system identification for arbitrary, unknown dynamics.

Thus, the learning-to-learn approach trains a first network that predicts the needed refer-
ence motion. This network aids the second network in identifying the system, thus enabling
good control performance later. The entire approach is illustrated in Figure 6.2, and it will
provide a fully autonomous learning control approach that can learn to adapt to unknown
dynamics online and without user intervention.

A code skeleton defining an rl environment is openly available9, where an agent controls
a randomly generated linear system to track a reference trajectory produced by a Gaussian Pro-
cess. This environment adheres to the widely used Gymnasium API, facilitating quick adoption
and enabling progress in future research.

9https://github.com/simon-bachhuber/L2L

https://github.com/simon-bachhuber/L2L
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Figure 6.2: Learning to learn. An ann-based policy πθ is trained in simulation by closing
the loop with a randomly generated system dynamics Ψ . Initially, a second ann gener-
ates a reference motion y∗ online until a non-trainable motion generator takes over. Both
anns are trained end-to-end by minimizing the rt loss, but fθ optimizes the tracking er-
ror after the motion generator takes over. This architecture should enable fθ to learn to
generate motions useful to the policy πθ for system identification. By training a single set
of parameters on a broad range of dynamics and motions, the two trained anns hopefully
zero-shot generalize to real-world scenarios.
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A
Recurrent Neural Networks

“Nothing in life is to be feared, it is only to be understood. Now is the time to understand more, so
that we may fear less.”

– Marie Curie, the first woman in France to obtain a doctorate in physics

This thesis focuses on developing a unified approach for motion analysis and control of dy-
namic systems, using rnns to address data efficiency, robustness, and real-world applicability
challenges. rnns are central to the thesis because their ability to process sequential data makes
them ideal for parameterizing policies in pomdps, as encountered in both motion control and
analysis tasks. This chapter delves deeply into the structure, training methods, and challenges
of rnns, highlighting their relevance in achieving the robust, plug-and-play solutions pro-
posed in this thesis.

A.1 What are RNNs?

rnns are a class of anns designed to recognize patterns in sequences of data such as text and
language or numerical time series data. Unlike feedforward anns, rnns have loops, allowing
information to persist. Mathematically, an rnn is typically characterized by a discrete-time
step function fθ which processes F ≥ 1 features stacked as the input vector xt ∈ R

F at time
t and the previous memory state (or hidden state) of the rnn with M units ξt ∈ R

M , and
computes the next hidden state ξt+1, i.e.

ξt+1 = fθ (ξt , xt) . (A.1)

Here, θ denotes the set of parameters of the rnn, and these parameters are shared across time,
i.e., the same step function with the same parameters is used to process the input data at all
times.

73
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Example A.1
A vanilla rnn with hidden state size M ∈ N that processes inputs of size F ∈ N has the

parameters given by Wξ ∈ R
M×M , Wi ∈ R

M×F , and b ∈ R
M , a nonlinear activation function σ

(typically tanh or ReLU), and is defined by the step function given by

ξt+1 = σ
(
Wξξt + Wixt + b

)
. (A.2)

Example A.4 shows the equivalent node or continuous time expression.

Often, the rnn is combined with a second feedforward ann, which creates the required
output of a suitable dimensionality. The output function gθ processes the hidden state (and
sometimes the input vector) and returns the output vector yt ∈ RG at time t, i.e.,

yt = gθ (ξt , xt) (A.3)

Note that in eq. (A.1), the step function fθ is itself a feedforward network, and it is used to
model the discrete-time dynamics, this is in contrast to nodes (see Section A.3.1) where a
feedforward network is used to model the continuous-time dynamics. Due to their ability to
store information in memory, rnns are also called stateful functions. Mathematically, this
can be better seen by combining equations eq. (A.1) and eq. (A.3) and omitting the explicit
input-output handling of the hidden state ξ. This then gives:

yt =
←−
h θ (xt) (A.4)

where the backward-pointing arrow
←−−
(..) indicates that the ann hθ has an internal state, a loop

back to itself. The internal state is why rnns are referred to as stateful functions. Given an
initial value for the hidden state ξ0 at time zero (typically zeros), eq. (A.4) can be unrolled
in time, which creates a neural network that maps a time series (or sequence) of input data
X ∈ RT×F consisting of T timesteps to a time series of output data Y ∈ RT×G, i.e.,

Y = hθ (X, ξ0) . (A.5)

Both eq. (A.4) and eq. (A.5) are referred to as an rnn.

A.2 Why RNNs?

Dynamic problems require dynamic solutions, and rnns are designed for time-series data and
excel in this area. They are well-suited because they allow for 1) online applicability (causality),
2) maintaining an internal state (memory), and 3) sharing parameters across time, enabling
them to capture temporal dependencies effectively. Let us dive into each aspect in more detail.

• Online applicability/Causality: rnns process every input after the other in a causal way.
Consider a conventional feedforward ann f /fθ and an rnn step function g/gθ. The rnn
is causal because, in lifted form, the upper-diagonal terms (highlighted in blue) are zero.

Feedforward NN︷                                         ︸︸                                         ︷


y1
y2
...
yT




=




f11 f12 . . . f1T
f21 f22 . . . f2T
...

...
. . .

...
fT 1 fT 2 . . . fT T







u1
u2
. . .
uT




Recurrent NN︷                                                     ︸︸                                                     ︷
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g 0 . . . 0
0 g . . . 0
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...
0 0 . . . g
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u2, ξ1(u1)

...
uT , ξT−1(uT−1, ...)
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A notable exception are bidirectional rnns. These networks typically first unroll their
step function forwards in time and then backwards in time while maintaining the hidden
state between the two passes. This process is similar to a forward-backward filter, and
such an operation mode is neither causal nor online applicable.

• Memory: rnns can store information that persists in time in their hidden state, which
gives them a form of memory. In other words, the output from an rnn unit depends
on the current input and previous inputs. The rnn has memory because it computes its
current output from the current input and hidden state (highlighted in blue). In contrast,
the feedforward ann is a static function of the inputs u.

Feedforward NN︷                                         ︸︸                                         ︷
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Recurrent NN︷                                                     ︸︸                                                     ︷
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0 g . . . 0
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...
0 0 0 g







u1, ξ0
u2, ξ1(u1)

...
uT , ξT−1(uT−1, ...)




• Parameter Sharing Across Time: rnns share the same parameters (weights and biases)
across all steps. Parameter sharing reduces the total number of parameters and complex-
ity of the model. The rnn has shared parameters across time because it uses the same
weights and biases g at every timestep (highlighted in blue). In contrast, the feedforward
ann has independent parameters for each timestep, and its number of parameters thus
scales quadratically with the input length.
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Example A.2
Let us consider the double integrator system mẍ + cẋ + kx = u where x(t) ∈ R is the displace-

ment of the mass from its equilibrium position, m ∈ R is the mass, c ∈ R is the damping
coefficient, k ∈ R is the spring constant, and u ∈ R is the external force applied to the system.
This system can be written in so-called state-space representation characterized by A,B,C,D

matrices by defining x1 := x, x2 := ẋ, and x =
[
x1
x2

]
such that system dynamics takes on the

following form

ẋ = Ax + Bu ↔ ẋ =
[

0 1
− k
m − c

m

]
x +

[
0
1
m

]
u,

y = Cx + Du ↔ y =
[
1 0

]
x +

[
0
]
u.

Note that the second equation is already of the form of equation eq. (A.3) and the dynamics
function ẋ = Ax+ Bu can be easily converted to discrete-time form with a time interval ∆t ∈ R,
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Figure A.1: FNN and rnn are used to fit input-output data of the double integrator system
of Example A.2. Observations: 1) rnn is naturally smooth, 2) rnn requires (much) less
parameters to be accurate. Perhaps surprisingly, the rnn must have M > 2 hidden state
dimensionality for accurate prediction.

i.e. xt+1 = expA∆t x + A−1
(
expA∆t −1

)
Bu. This has been achieved by transforming a second-

order single-state ODE into a first-order ODE with two coupled state variables (because the off-
diagonal terms of the A matrix are not zero). The state of the system, that is, the displacement
and velocity, structurally corresponds to the internal state of the rnn.

Suppose we have collected the system’s input-output data at T equidistant time intervals
and would like to learn the system input-output map for, e.g., subsequent control-related pur-
poses. Then, we can fit either a FNN or a rnn to the data and obtain Figure A.1. Perhaps
surprisingly, the rnn must have M > 2 hidden state dimensionality for accurate prediction.
Note how rnn with M = 1 can not (and does not) oscillate; it only decays to a fixed value.

Example A.3
The dynamics of natural language. rnns have also been proposed for NLP tasks. The reason

is that words and language depend on the context, which is due to the dynamic aspect of
language; consider the following example:

• Sentence 1: “He saw that her eyes were full of tears.”

• Sentence 2: “He saw that her project was full of errors.”

In both sentences, the word “saw” appears, but its meaning shifts depending on the context
provided by the rest of the sentence: In Sentence 1, “saw” is used in the context of perceiving
visually; he notices her emotional state as indicated by her tears. In Sentence 2, “saw” pertains
to noticing or realizing something intellectually; in this case, the many mistakes in her project.
This shift in meaning is a clear example of how language is dynamic and context-dependent.
The word remains the same, but its interpretation changes dramatically based on the surround-
ing words. Also note that in contrast to physical systems, language is not causal. The word
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“saw” ’s intended meaning only becomes apparent after observing the entire sentence.

A.3 Variants of RNNs

Several variants of rnns have been developed to address different challenges in sequence mod-
eling. These include:

• Vanilla rnn (defined in Example A.1),

• lstm proposed in Hochreiter and Schmidhuber (1997) to address gradient-related prob-
lems, or

• gru, a simplified lstm, proposed in (Cho et al., 2014).

• Ongoing research also explores newer architectures such as the Linear Recurrent Unit
(LRU) (Orvieto et al., 2023).

A.3.1 Neural Ordinary Differential Equations

While rnns are typically characterized by learning a discrete-time step function fθ (see eq. (A.1)),
nodes are obtained by modeling the right-hand side of a continuous-time differential equation
using a feedforward ann

dξ(t)
dt

= fθ (ξ(t), x(t)) . (A.6)

More precisely: the expression dξ(t)
dt = fθ (ξ(t)) is referred to as a node, whereas the expression

eq. (A.6) is referred to as a controlled node (Kidger, 2022), however we do not make this
distinction here. nodes are well established for modeling and forecasting of time series data
(Fitzgerald et al., 2023; Hasani et al., 2022; Kidger, 2022; Kidger et al., 2020). Also note that
they should not be confused with physics-informed anns which use anns to learn solutions
to known differential equations, i.e., dyθ(t)

dt = f
(
yθ(t)

)
where f is known (Cuomo et al., 2022;

Hao et al., 2023).

Example A.4
We can recover the equation of the vanilla rnn as defined in eq. (A.2) by explicit Euler dis-

cretization with a time interval ∆t ∈ R of

dξ(t)
dt

=
1
∆t

(
σ
(
Wξξ(t) + Wix(t) + b

)
− ξ(t)

)

Note the term −ξ, which shows that the hidden state exponential decays, and this, in parts,
explains why rnns struggle to capture long-range dependencies (Kidger, 2022). Example A.1
shows the equivalent rnn step function and discrete time expression.
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A.4 Backpropagation Through Time

Both rnns and nodes are typically trained using standard backpropagation However, the
hidden state ξt+1 at time t+1 depends on the current input xt and the previous hidden state ξt

(which itself depends on the previous input xt−1 and so on). Hence, it depends on all previous
inputs More formally, suppose we want to minimize the mse between prediction ŷt and truth
yt. To this end, we compute the gradient using the chain rule and equations (A.1), (A.3):

d
(
(ŷt − yt)2

)

dθ
= 2 (ŷt − yt)

dŷt
dθ

= 2 (ŷt − yt) dgθ(ξt , xt)
dθ

= 2 (ŷt − yt)
(
dgθ
dθ

∣∣∣∣
ξt ,xt

+
dgθ
dξ

∣∣∣∣
ξt ,xt

dξt

dθ

)

= 2 (ŷt − yt)
(
dgθ
dθ

∣∣∣∣
ξt ,xt

+
dgθ
dξ

∣∣∣∣
ξt ,xt

dfθ(ξt−1, xt)
dθ

)

= 2 (ŷt − yt)
(
dgθ
dθ

∣∣∣∣
ξt ,xt

+
dgθ
dξ

∣∣∣∣
ξt ,xt

(
dfθ
dθ

∣∣∣∣
ξt−1,xt

+
dfθ
dξ

∣∣∣∣
ξt−1,xt

dξt−1

dθ

))
(A.7)

where there will be a recursive expansion (blue highlighted terms) until the first timestep of
the sequence.

Example A.5
Backpropagation learns inverse in time. Note how the error for both feedforward ann and
rnn predictions in Figure A.1 are more prominent towards the end of the sequence. One may
interpret this as due to the larger absolute amplitude of the target variable y(t) in this time
interval. However, this only tells half the story in the case of the rnn. This missing half is due
to backpropagation through time, which emphasizes earlier predictions because everything
afterward depends on them (and not vice versa). To see this, let us reconsider the example but
with a constant signal amplitude and look at the prediction of the perfect fit rnn (M = 4) after
a different number of learning steps in Figure A.2.

A.5 Challenges, Solutions and Future Directions for RNNs

rnns are well-suited for sequential data, but several challenges limit their applicability. First,
due to their recurrence relation, rnns require sequential computation. While this allows them
to store information in their internal memory, allowing information to persist, it also restricts
scalability. Using just-in-time compilers such as JAX Bradbury et al. (2018), one can (to some
extent) trade off memory footprint for speed. Additionally, there are two main challenges
when training rnns with backpropagation through time: They are referred to as vanishing
and exploding gradients. To motivate these two challenges, consider a learning problem that
can be solved by identifying a pattern in the input data xt at time t that manifests in the input
that is T ∈ N timesteps apart (or, in the past), then from eq. (A.7) it follows that the required
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Figure A.2: rnn fits the cosine function and its prediction after a different number of
training steps. Due to backpropagation through time earlier values are learned first.

gradient for learning this pattern is proportional to

∇θL ∝
T−1∏

i

dfθ
dξ

∣∣∣∣∣
ξt−i ,xi−i+1

. (A.8)

Consider Example A.6 for an example of such a learning problem. In this learning prob-

lem, vanishing gradients occur when
∣∣∣∣ dfθdξ

∣∣∣∣ < 1 and T is large, then the recursive expansion

in eq. (A.7) leads to a gradient that exponentially decays to zero. On the other hand, exploding

gradients occur when
∣∣∣∣ dfθdξ

∣∣∣∣ > 1 and T is large since then the gradient exponentially grows.
The above variants of rnns have been proposed to address these challenges. For example,

the careful design of network architectures as found in the lstm and gru architecture ensures

that
∣∣∣∣ dfθdξ

∣∣∣∣ = 1 ∀ξ, x which avoids both vanishing and exploding gradients. A second comple-
mentary solution is to use truncated backpropagation through time. It involves truncating the
recursive expansion early, i.e., assuming in eq. (A.7) that after K ∈ N steps the hidden state

no longer depends on the parameters and is just a constant, that is dξt−K
dθ

!= 0. Finally, a last
solution is simply not using rnns. Initially proposed in Vaswani et al. (2023), Transformers
have proven highly effective at capturing long-range dependencies.

Example A.6
Revisit the Example A.3. In order to properly distinguish the two intended meanings of the

word “saw” in the two contexts, an rnn would require efficient backpropagation through the
entire context. If we assume a single character dictionary (this is not the sota choice, sota
large language models typically use tokenization with 8-32k vocabulary sizes using the, e.g.,
byte-pair-encoding (Sennrich et al., 2016) or unigram language model (Kudo, 2018)), then this
would imply backpropagation through a sequence of length 40 and 43, respectively.





B
Remarks, Definitions, Theorems, and Else

Limitations of Linearizations Without loss of generality, consider the nonlinear dynamics
ẋ = f (x). Let ∆t be the discrete timestep size and ∆f be the difference in linearization between
timesteps which equals the maximum error due to the linearization assumption in between
timesteps:

∆f (x, t) =
1
2!

d2f

dx2

∣∣∣∣∣∣
x︸ ︷︷ ︸

nonlinearity




dx
dt

∣∣∣∣∣
t︸︷︷︸

variation

∆t + O
(
∆t2

) 
2

+ O(∆t3) (B.1)

Thus, the variability of the state dx
dt increases the linearization error quadratically.

Example B.1
Analogous navigation principles. The Polar Star’s unique position, nearly aligned with Earth’s
rotational axis, makes it appear stationary in the night sky directly above the North Pole.
Vikings exploited this natural phenomenon for open-sea navigation when no landmarks were
visible, establishing one of humanity’s earliest reliable orientation systems.

Our interaction with the Polar Star can be modeled
as a directional sensor that parallels modern imus
using Earth’s magnetic field for northbound orien-
tation: when pointing at the Polar Star, our arm’s
orientation relative to our body encodes our rota-
tion. As we turn while maintaining this pointing
gesture, the arm-to-body angle continuously reflects
our orientation relative to this fixed celestial refer-
ence. However, this measurement alone leaves one
dof undetermined - the rotation around the arm’s
axis.

To establish unique orientation, we need a second reference direction, either from another
star or from pointing downward (analogous to an imu’s accelerometer measuring gravity’s
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direction). The plane formed by these two pointing directions remains invariant under rota-
tion, while its projection into our body’s coordinate system provides sufficient information to
uniquely determine our complete orientation.

Definition B.2. Observability by example. If for all input trajectories u(t) and initial condi-
tions x(t = 0) (i.e., for all motions), there exists an observer that accurately tracks the target
state variable x̂ ⊆ x from the measurements y(t′ < t) in the dynamical system governed by
ẋ(t) = f (x(t), u(t)) and y(t) = g(x(t), u(t)), then the tuple of f , g, x̂, y is said to be observable.
Note that in practice we assess the observability not for all state trajectories but rather for a
(large) number thereof.

Theorem B.3. Non-observability by example. From Definition B.2 it follows directly that,
if for the tuple of f , g, x̂, y, there exists at least two input trajectories u1/2(t) and/or initial
conditions x1/2(t = 0) (i.e., two or more motions) with corresponding measurement y1/2(t) and
state trajectories x̂1/2(t), such that there exists a moment in time t′ ∈ R with x̂1(t′) , x̂2(t′) and
y1(t) = y2(t) ∀t < t′, then the tuple is said to be non-observable.

Definition B.4. Controllability by example. If for all initial state x0 and final states xf , there
exists an input trajectory u(t) such that the systems evolves from the initial to the final state.



License Statements

If a figure or table is not explicitly credited here, it is understood to have been created by S.B.

• Figure 1.1: All three images are license-free

• Figure 1.3: Created by S.B. using the MuJoCo software (Todorov et al., 2012) which is
publicly available under the Apache License, Version 2.0. The model of the U10e robot is
part of Google’s Menagerie project (Zakka et al., 2022)

• Figure 1.4: Created by S.B. using the OpenSim software (Delp et al., 2007) which is pub-
licly available under the Apache License, Version 2.0.

• Figure 1.6: Adapted from OpenAI et al. (2019a) with consent by OpenAI

• Figure 2.1: Created by S.B. using Dall-E 3. OpenAI’s content policy and terms state
that you own the images you create with Dall-E, including the right to reprint, sell, and
merchandise

• Figure 2.4: Reprinted from Bachhuber et al. (2024c)

• Figure 2.7, left side: This image is reused material of the publication Truby et al. (2018).
Explicit consent was given by both the publisher, Wiley, and the first author, Ryan L.
Truby. The license is available here https://s100.copyright.com/CustomerAdmin/
PLF.jsp?ref=d8b2ba1c-5435-4cf8-8f88-41a04d0b5cb4

• Figure 2.7, right side: Adapted from Bachhuber et al. (2024a)

• Figure 4.2: Reprinted from Bachhuber et al. (2024b)

• Figure 4.3: Adapted from Bachhuber et al. (2024b)

• Figure 5.1: Reprinted from Bachhuber et al. (2022)

• Figure 5.2: Reprinted from Bachhuber et al. (2024c)

• Figure 5.3: Reprinted from Bachhuber et al. (2023b)

• Figure 5.4: Reprinted from Bachhuber et al. (2024a)

• Figure 5.5: Reprinted from Bachhuber et al. (2024a)

83

https://s100.copyright.com/CustomerAdmin/PLF.jsp?ref=d8b2ba1c-5435-4cf8-8f88-41a04d0b5cb4
https://s100.copyright.com/CustomerAdmin/PLF.jsp?ref=d8b2ba1c-5435-4cf8-8f88-41a04d0b5cb4


84 License Statements

• Table 5.1: Adapted from Bachhuber et al. (2023a)
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Abstract—Inertial measurement units are widely used for mo-
tion tracking of kinematic chains in numerous applications. While
magnetometer-free sensor fusion enables reliably high accuracy
in indoor environments and near magnetic disturbances, the use
of sparse sensor setups would yield additional advantages in cost,
effort, and usability. However, it is unclear which sparse sensor
setups can be used to track which motions of which kinematic
chains, since observability of the underlying nonlinear dynamics
is barely understood to date. We propose a method that utilizes
recurrent neural networks (RNNs) and automatically generated
training data to assess the observability of the relative pose
of kinematic chains in sparse inertial motion tracking (IMT)
systems. We apply this method to a range of double-hinge-
joint systems that perform fully-exciting random motion. Results
show how the degree of observability depends on the kinematic
structure and that RNN-based observers can achieve small
tracking errors in a large range of sparse and magnetometer-
free setups. The proposed methods enable systematic assessment
of observability properties in complex nonlinear dynamics and
represent a key step toward enabling reliably accurate and non-
restrictive IMT solutions.

I. INTRODUCTION

In recent years, technological advances in microelectrome-
chanical systems have resulted in smaller, more affordable
inertial measurements units (IMUs). As a result, IMUs are
now widely applied in a broad range of application domains
[1], which includes autonomous driving [2], aerospace engi-
neering [3], and health applications [4], [5]. In many of these
applications IMUs are used to track the motion of some sort
of kinematic chain that consists of multiple rigid segments
connected by joints. One IMU is attached to each segment, and
the 3D accelerometer, 3D gyroscope and 3D magnetometer
readings are fused to estimate the orientation and position of
all segments.

However, inhomogeneous magnetic fields in indoor environ-
ments and in proximity of ferromagnetic material or electric
devices severely degrade the accuracy of orientation estimates
in real-world scenarios [6]–[9]. To address this challenge,
several 6D sensor fusion methods were proposed that omit
magnetometer readings but compensate the loss of informa-
tion by exploiting kinematic constraints, see e.g. [10]–[15].
While such methods enable magnetometer-free relative-pose

estimation in kinematic chains, they require a full IMU setup
with one IMU per segment.

The use of sparse sensor setups, as illustrated in Figure 1,
would lead to reduced effort and cost, and thus increased
usability, in many applications. Despite the inherent challenges
of this approach, promising initial results have been published
in recent years at least for magnetometer-dependent 9D fusion,
see [16]–[20]. It was found that sparse sensor setups generally
lead to non-uniformly observable systems, in which multiple
poses or motions generate the same measurements and the
relative pose can only be determined when the performed
motion provides sufficient excitation. As a consequence, es-
timation errors may vary largely and unpredictably over time.
This effect is even stronger when magnetometer readings are
omitted, and it explains why combining the advantages of 6D
and sparse IMT has rarely been achieved so far [21].
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Fig. 1. An RNN-based observer is used to investigate observability in
sparse inertial motion tracking systems that perform random translations and
rotations. The RNN-based observer’s ability to track the relative orientations
of the kinematic chain increases as we change the kinematic structure such
that the second hinge joint axis is non-parallel to the first hinge joint axis.

In both the 6D and the 9D case, the underlying dynamics
are highly nonlinear, and – to the best of our knowledge –
no formal observability analysis has been presented to date.
This is true with the exception of a single conference paper
that considered the special case of a double-hinge-joint sytem



with non-parallel joint axes directions and finds one sufficient
but not necessary condition for observability via formulation
of an explicit joint constraint [22].

Despite the value of this initial result, it remains generally
unclear which sparse sensor setups can be used to track which
motions of which kinematic chains and how to systematically
answer this question. In the present contribution, we address
this question via a neural-network-based approach.

Machine learning has been previously applied to orientation
estimation in, e.g. [23], [24], and in particular in combination
with sparse IMU placement in, e.g. [17], [20], [25]. Moreover,
neural networks have been used for state estimation and
observability analysis in [26], [27]. In the present work,
we leverage the universal approximation properties of neural
networks to answer the question whether the system states can
be uniquely inferred from (a sequence of) the measurements
of a magnetometer-free sparse IMT system.

More specifically, we propose a method that proves observ-
ability by example [28], i.e. by showing that an observer exists.
Instead of investigating only observability that is induced by
explicitly modeled joint constraints, we propose a purely data-
driven approach that trains a recurrent neural network observer
on automatically generated training data. We then apply that
method to example setups with two IMUs attached to the
outer segments of a three-link kinematic chain that performs
fully exciting random motions, as illustrated in Figure 1. We
show that the learning convergence behaviour is remarkably
different in observable versus non-observable systems, and
we investigate how the observability properties of the given
system are influenced by its kinematic structure.

II. PROBLEM FORMULATION

In this section, we define and explain the magnetometer-
free sparse IMT problem for a general kinematic chain. While
the following description is given for a kinematic chain with
three segments and two sensors, as illustrated in Figure 2, the
considerations directly extend to other sparse setups with a
different number of segments and sensors.

Each IMU provides measurements of the three-dimensional
angular rate and acceleration, while magnetometer readings
are omitted for reasons given in Section I. The relative
pose of the kinematic chain, i.e. the relative orientation of
each segment with respect to its neighboring segments, shall
then be determined from these magnetometer-free and sparse
measurements. For the sake of brevity, we assume all sensor-
to-segment orientations [14], [29]–[31] to be identity.

Both 6D measurements are combined into one measurement
signal yt ∈ R12 defined as

yt := (ω1(t)
⊺, ρ1(t)

⊺, ω3(t)
⊺, ρ3(t)

⊺)⊺ ∀t (1)

where ω1(t), ρ1(t) and ω3(t), ρ3(t) denote gyroscope and
accelerometer measurements at time t for the first IMU
(on segment S1) and the second IMU (on segment S3),
respectively. The relative pose of the kinematic chain is fully
determined by the state xt ∈ R8 with

xt :=
(
x
(l)
t

⊺
,x

(r)
t

⊺)⊺
:=
(
S1(t)
S2(t)

q⊺, S3(t)
S2(t)

q⊺
)⊺

∀t (2)

where S1(t), S2(t) and S3(t) are the sensor/segment coor-
dinate systems (or frames) at time t. Then, S1(t)

S2(t)
q ∈ H

and S3(t)
S2(t)

q ∈ H are the two unit quaternions that describe
the orientation between segment one and segment two and
between segment three and segment two, respectively. Here,
H is the vector space of unit quaternions, a representation of
SU(2).

In light of the variety of different observability definitions
in literature (see e.g. [28], [32]), it is important to state that
we consider a filtering problem, in which the system state xt

at any instant t must be uniquely inferred from the current and
all previous measurements y1:t. If and only if this is feasible,
we consider the system to be observable.

Although no specific criteria exist, it is known that this
observability property depends both on the kinematic structure,
including the degrees of freedom and rotation axes of the
joints, and on the excitation provided by the performed motion.
For the sake of brevity, we eliminate the latter and focus
on the former, i.e. we limit all considerations to the ideal
case of maximum excitation through random motion. The
main research problem is thus to find a method that enables
systematic assessment of the given observability property in
magnetometer-free sparse IMT setups with different kinematic
structures.

Fig. 2. Kinematic chain with three segments but only two 6D-IMUs (red
boxes on first and third segment). The three segments S1,S2 and S3 are
connected by two joints. The vectors S1

r12, S2
d, S3

r32 are time-invariant
in their local frames.

III. METHODS

In this section we propose a method for solving the problem
defined in Section II. The method consists of large-scale
simulation of random kinematic-chain motions in order to train
an RNN-based observer (RNNo) through supervised learning.
We first describe how to simulate the motion and derive the
training pairs, i.e. the vector of measurements (input) and the
state vector (output), from it. Then, we introduce the analytic
form of the RNNo. Next, we define a suitable objective
function, which we then optimize to train the RNNo. Finally,
we establish the relation between the RNNo’s estimation
capabilities and the observability of the simulated system.

A. Simulation of training data
We start by defining the required frames. The navigation

frame is denoted by E , it is time-invariant and its z-axis



is aligned with the Earth’s gravity vector. The three (time-
dependent) segment frames are given by S1(t), S2(t), and
S3(t). The orientations of the segments w.r.t. the navigation
frame are then given by the quaternions S1(t)

Eq, S2(t)
Eq, and

S3(t)
Eq, respectively. The chain is connected at all times, i.e.

Er3(t) = Er1(t) + Er12(t) + Ed(t)− Er32(t) ∀t (3)

where r12 denotes the vector connecting sensor one to the
joint that connects segment one and two; similarly r32 denotes
the vector connecting sensor three to the joint that connects
segment three and two; d is the vector between the two joints.
Finally, r1 and r3 denotes the position of sensor one and two,
respectively. All three segments are assumed to be perfectly
rigid. Therefore, as illustrated in Figure 2, the relative vectors
that compose the chain are time-invariant in their local frame,
i.e.

Er12(t) :=
(
S1(t)

Eq
)
⊗ S1(t)

r12 ⊗
(
S1(t)

Eq
)−1

∀t,

Ed(t) :=
(
S2(t)

Eq
)
⊗ S2(t)d⊗

(
S2(t)

Eq
)−1

∀t,

Er32(t) :=
(
S3(t)

Eq
)
⊗ S3(t)

r32 ⊗
(
S3(t)

Eq
)−1

∀t (4)

where ⊗ : H × H → H denotes quaternion multiplication
and Euclidean vectors are interpreted as pure quaternions if
required. The segment lengths are assumed to be known.

With these assumptions, the motion of the chain is com-
pletely determined by, e.g. specifying

• Er1(t) (translation of sensor one)

• S1(t)
Eq (rotation of sensor one)

• S1(t)
S2(t)

q, S3(t)
S2(t)

q (relative rotation).

We generate Er1(t) and S1(t)
Eq by randomly sampling position

and orientation changes as well as the corresponding time
intervals from uniform distributions, such that velocities and
angular velocities are bounded from above. Cosine interpola-
tion is used, and random distortions are added to avoid any
regular interpolation patterns that the network might learn to
exploit. Figure 3 shows a randomly chosen example motion.

Double hinge joint systems impose the following model for
inter-segment rotations

S1(t)
S2(t)

q :=
(
cos α(l)(t)

2 , sin α(l)(t)
2 S2(t)k

(l) ⊺
)⊺

∀t,
S3(t)
S2(t)

q :=
(
cos α(r)(t)

2 , sin α(r)(t)
2 S2(t)k

(r) ⊺
)⊺

∀t, (5)

which are parameterized by the joint angles α(l)(t), α(r)(t) ∈
R and the joint axes S2(t)k

(l), S2(t)k
(r) ∈ R3. We sample

α(l)(t) and α(r)(t) randomly using the same routine as above.
The components of the joint axes directions are fixed in S2(t),
and without loss of generality we model the second (or right)
joint-axis direction S2(t)k

(r) relative to the first (or left) joint-
axis direction S2(t)k

(l) as

S2(t)k
(r) := Rz(ϕ) S2(t)k

(l) ∀t (6)
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Fig. 3. Example motion for a kinematic chain with two hinge joints and
perpendicular joint axes directions. The chain motion is specified using the
position (top row) and orientation (middle row) of sensor one as well as both
hinge joint angles (bottom row). The motion provides full random excitation.

where Rz(ϕ) represents the rotation matrix with angle ϕ ∈
[0, 90◦] around the unit-length z-vector. The joint axes direc-
tions are parallel for ϕ = 0 and perpendicular for ϕ = 90◦.
Variation of the left joint axis direction in combination with
the angle ϕ maps out all possible double-hinge joint systems,
or an equivalent representation thereof.

To enable supervised learning of the RNNo, we generate
training pairs that correspond to input and ground truth output.

1) State vector: The state vector xt from (2), required as
ground truth output, is given by, e.g.

S2(t)

(
S1(t)
S2(t)

q
)
:=
(
S1(t)

Eq
)−1

⊗ S2(t)
Eq ∀t,

S2(t)

(
S3(t)
S2(t)

q
)
:=
(
S3(t)

Eq
)−1

⊗ S2(t)
Eq ∀t. (7)

2) Measurement model: The measurement vector yt from
(1), required as input, is composed of simulated gyroscope
and accelerometer measurements. The gyroscope of sensor one
measures (compare [33])

S1(t)
ω1(t) :∼= 2

d
(
S1(t

′)
Eq
)

dt′

∣∣∣∣∣∣
t

⊗
(
S1(t)

Eq
)−1

︸ ︷︷ ︸
true measurement

+ serror (ϵgyro(t) + ξgyro)︸ ︷︷ ︸
noise and bias

∀t (8)

and the accelerometer of sensor one measures

S1(t)
ρ1(t) :=
(
S1(t)

Eq
)−1

⊗
(
d2 (Er1(t

′))

dt′2

∣∣∣∣
t

+ Eg

)
⊗ S1(t)

Eq

︸ ︷︷ ︸
true measurement

+ serror (ϵacc(t) + ξacc)︸ ︷︷ ︸
noise and bias

∀t (9)



GRU-layers Linear-layers Parameter count
shallow 100, 100 50, 25 100 632
medium 300, 200 100, 50, 50, 25, 25 612 032
complex 400, 300 200, 100, 50, 50, 25, 25 1 216 536

TABLE I
STACKING BLOCKS WITH VARYING NUMBER OF HIDDEN NODES GIVES

RISE TO THE DIFFERENT NETWORK COMPLEXITIES OF THE RNN-BASED
OBSERVER.

where Eg = (0, 0, 9.81)⊺ms−2 is the gravity vector. In both
latter equations serror ∈ R is a scaling factor and ϵ, ξ are
random variables representing noise and bias, respectively.
Sensor two attached to segment three measures analogously
to sensor one.

B. Architecture of the RNNo

The RNNo is responsible for estimating the system state (7)
from a time-series of measurements (8), (9). We propose the
following network fθ : Rt×12 → H2

y1:t → GRU → Layernorm → Elu︸ ︷︷ ︸
repeat ng times

→ Linear → Relu︸ ︷︷ ︸
repeat nl times

→ Linear

→ Split → Normalize → x̂t ∀t.
We differentiate between three different network complexities
(shallow, medium, complex) by stacking a varying number
of GRU blocks and Linear blocks, with a varying number
of hidden nodes per block, as summarized in Table I. The
network architecture is motivated by [23] where a similar
RNNo is used for attitude estimation. The choice of activation
functions is based on hyperparameter optimization, where
the set of candidate functions stems from analysis given in
[34]. We use layer normalization (Layernorm) as described
in [35] to aid recurrent network training. The eight network
outputs are split and normalized to Euclidean norm of one to
create two unit quaternions that represent the inter-segment
orientations.

C. Objective Function

Supervised learning requires a scalar objective function that
captures and quantifies the estimation goal. It is given by the
expectation of the squared error signal

J (θ) := E
(x1:T ,y1:T )


 ∑

i∈{l,r}

T∑

t=1

e
(
x
(i)
t , x̂

(i)
t

)2

 (10)

where e : H×H → R is a scalar error signal, which is given
by

e (q, q̂) := angle
(
q⊗ q̂−1

)
.

The estimated state is given by

x̂t :=
(
x̂
(l)
t

⊺
, x̂

(r)
t

⊺)⊺
:= fθ(y1:t)

where fθ : Rt×12 → H2 is the RNNo, and the lower index t
is the discrete-time index. The angle operation angle : H → R

extracts the smallest angle of rotation between a unit quater-
nion and the identity quaternion. It is given by

angle(q) := 2 arccos (q [1]) ∼= 2arctan

(√
1−q[1]2

q[1]

)

where q [i] is used to denote the i-th component of the
unit quaternion q. The equivalent expression utilising arctan
is preferred due to numerical advantages in the context of
gradient-based optimization.

D. Network Training

The simulated data (cf. Section III-A) is used to compute
the objective function (cf. Section III-C), which we can
minimize in an iterative manner to obtain a trained RNNo
(cf. Section III-B).

The parameter vector θ is iteratively updated by generating
a batch of training data, computing the objective function, and
performing an optimization step. We refer to this process as
one batch generation and denote the parameter vector after,
e.g., 100 batch generations by θ100. However, due to the
usage of truncated backpropagation through time (TBPTT),
one batch generation incorporates multiple parameter updates.
At every batch generation we estimate the expectation in (10)
as an arithmetic mean of the error over 2048 sequences.
Every sequence contains 60 s of data at 100Hz, resulting
in sequences of length T = 6000. The 2048 sequences are
obtained by sampling 1024 sequences from the simulated
distribution and adding additional 1024 sequences with α(l)

and α(r) interchanged. This approach avoids overfitting, a
common issue in supervised machine learning [36], as we are
able to sample indefinitely many training- and validation data
points from an identical distribution. Note that after 1000 batch
generations the network has already seen approximately four
years of chain motion ( 1000·2048·60 s

365·24·3600 s year−1 ). Data simulation at
this scale is possible due to utilization of GPUs. The JAX
library [37] is used to implement an efficient, JIT-compiled,
GPU-accelerated data simulation. We also bypass CPU-to-
GPU transfer overhead. The network is implemented using
the Haiku library by DeepMind [38], which is itself built on
top of JAX.

For optimization of the objective function we use the
Adam optimizer combined with constant and adaptive gradient
clipping, a decaying learning rate, lookahead, and TBPTT.
Details are given in Table II. We use a decaying learning rate
for faster convergence. To overcome the exploding/vanishing
gradient problem common in the training of RNNs, TBPTT
is applied. Borrowing the notation from [39], we utilize
TBPTT(10 s, 10 s), i.e. gradients are stopped and applied after
10 s instead of the total length of 60 s. This results in every
batch generation corresponding to six parameter updates, or
in 1500 batch generations corresponding to 9000 parameter
updates. Finally, recall from Section III-B that the network
output is normalized to represent two unit quaternions. To
encourage the network to normalize naturally, we regularize on
the absolute deviation to unity of the normalization operation
with λ = 0.1 as proposed by [24].



gradient clipping 0.3

norm-based gradient clipping 0.25

cosine decaying learning rate 3×10−3 to 3×10−10 over 9000
updates

lookahead step size = 0.7 every 6 updates
adam optimizer b1 = 0.99, b2 = 0.999

TABLE II
SUMMARY OF DIFFERENT 1ST-ORDER OPTIMIZATION TECHNIQUES THAT

ARE DEPLOYED FOR OPTIMIZATION OF THE OBJECTIVE FUNCTION.

E. Assessing observability

As discussed in Section I, it is generally intractable to
formally analyze the observability for the complex nonlinear
dynamics of sparse IMT. A central idea of the present contri-
bution is to gauge observability of such systems through the
learning progress and performance of an RNNo. Specifically,
we quantify the RNNo’s performance using the following mea-
sures. The root-mean-squared angle error (RMSE) between the
estimated relative orientation x̂

(i)
t of the i (left or right) joint

and the corresponding ground truth x
(i)
t is given by

R(i)
k := R(i) (θk) :=
(

E
(x1:T ,y1:T )

[
1

T

T∑

t=1

e
(
x
(i)
t , x̂

(i)
t

)2
])0.5

∀i ∈ {l, r}

and the 90-percentile of the absolute angle error is given by

Q(i)
k := Q(i) (θk) :=

E
(x1:T ,y1:T )

[
percentilet

[∣∣∣e
(
x
(i)
t , x̂

(i)
t

)∣∣∣
]]

∀i ∈ {l, r}.

Here, θk denotes the parameter vector after k ∈ N batch
generations, and the expectation is estimated (at every batch
generation) by sampling 2048 additional sequences, i.e. train-
ing data is not reused. We refer to these measures after 1400
batch generations as the residual error.

We then use the following arguments to investigate whether
some given sparse IMT system A is observable for maximally
exciting motion (cf. Section II). Moreover, we propose to
use the RNNo’s performance as a measure of the degree of
observability, which – similar to the concept of observability
Gramians – enables quantitative comparison of two observable
sparse IMT systems.

Argument 1 (Non-observability) If A is non-observable,
then the proposed RNNo cannot converge to low residual error,
even if the amount of training data is increased, even if the
parameter count of the RNN is increased, and even if the noise
and bias levels are reduced.

Argument 2 (Observability) If an RNNo trained with data
from A converges to a small residual error, then observability
of A is proven by example [28]. In such a case, this residual
error should exhibit some dependence on the RNN’s parameter
count, the amount of training data, and the noise and bias
levels.

Fig. 4. Four different double-hinge-joint systems corresponding to different
realizations of the joint axes directions.

Argument 3 (Degrees of observability) Let A,B be observ-
able as defined in Argument 2. If the same RNNo achieves a
lower residual error when trained on data from A than when
trained on data from B, then A is said to have a higher degree
of observability than B.

IV. OBSERVABILITY ANALYSIS

In this section we investigate the observability of different
realizations of the general IMT problem of Section II using
the proposed method from Section III.

We start off by introducing a double-hinge-joint system that
is guaranteed to be non-observable and use it to exemplify
Argument 1. Then, using Argument 2 and Argument 3, we
show that all other double-hinge-joint systems are observable
but not to the same degree. Finally, we showcase the RNNo’s
estimation capabilities in more complex systems involving
joints with higher degrees of freedom.

For double-hinge-joint systems, the simulation is parameter-
ized by the chain dimensions defined in (4), and by choosing
the distribution of the noise and bias random variables defined
in the measurement model of (9), (8). Their numerical values
are given in Table III. Finally, different kinematic structures
are considered by varying the direction of the left joint axis
S2(t)k

(l) and the angle ϕ ∈ [0, 90◦] as defined in (6). We
relate to the following four joint axes combinations using the
following abbreviations:

• d∥k(l) ∥ k(r) : Middle segment is parallel to the left
joint axis, which is parallel to the right joint axis, i.e.
S2(t)k

(l) = (1, 0, 0)⊺ and ϕ = 0,
• d∦k(l) ∥ k(r) : Middle segment is not parallel to left joint

axis, which is parallel to right joint axis, i.e. S2(t)k
(l) =

1√
3
(1, 1, 1)⊺ and ϕ = 0◦,

• d∦k(l) ∥ k(r) : Middle segment is not parallel to left
joint axis, which is not parallel to right joint axis, i.e.
S2(t)k

(l) = 1√
3
(1, 1, 1)⊺ and ϕ ∈ (0, 90◦),

• d∦k(l)⊥k(r) : Middle segment is not parallel to left
joint axis, which is perpendicular to right joint axis, i.e.
S2(t)k

(l) = 1√
3
(1, 1, 1)⊺ and ϕ = 90◦.

These four kinematic structures are illustrated in Figure 4.

A. Observability as a binary system property

In the case d∥k(l) ∥ k(r) , exchanging joint angles α(l)

and α(r) leads to a different state xt while the mea-



S1(t)
r12 (0.5, 0.5, 0.5)⊺m

S2(t)
d (0.5, 0, 0)⊺m

S3(t)
r32 (0.5, 0.5, 0.5)⊺m

gyroscope noise ϵgyro(t) N
(
0,

(
1 ◦ s−1

)2)

gyroscope bias ξgyro U
(
−1 ◦ s−1, 1 ◦ s−1

)

accelerometer noise ϵacc(t) N
(
0,

(
0.5m s−2

)2)

accelerometer bias ξacc U
(
−0.5m s−2, 0.5m s−2

)

TABLE III
DIMENSIONS OF SIMULATED KINEMATIC CHAIN AND SIMULATED

MEASUREMENT ERRORS OF THE TWO IMUS.

system R(l)[°]

serror
2.0 1.0 0.1

d∦k(l)⊥k(r) 1.60 ± 0.07 1.25 ± 0.01 1.17 ± 0.09

d∦k(l) ∥ k(r) 3.37 ± 0.24 2.34 ± 0.01 1.66 ± 0.05

d∥k(l) ∥ k(r) 61.61 ± 0.25 61.61 ± 0.25 61.61 ± 0.25

TABLE IV
IMPACT OF NOISE AND BIAS LEVELS ON RESIDUAL ERROR FOR

DOUBLE-HINGE-JOINT SYSTEMS. MEAN AND STANDARD DEVIATION OF
THE RMSE R(l)

1400:1500 IN DEGREES.

surement yt remains unchanged. Therefore, it is a non-
observable system. The same statement cannot be made about
d∦k(l) ∥ k(r) . Figure 5 compares the estimation error R(l)

k

between d∥k(l) ∥ k(r) and d∦k(l) ∥ k(r) as a function of
the number of batch generations k. The error of the non-
observable system stagnates at a much higher residual error.
Increasing the network’s parameter count has no effect. This is
in complete contrast to the right subplots, where the residual
error is not only lower to begin with but also decreases as we
increase the network’s complexity.

Figure 6 compares one exemplary time series of one
joint angle estimation error obtained by the complex net-
work after 1500 batch generations for d∥k(l) ∥ k(r) versus
d∦k(l) ∥ k(r) , which clearly shows large error spikes only for
the non-observable system. In Tables IV and V we find that
neither decreasing the noise and bias scale parameter serror nor
increasing the batch size has an effect on the residual error
for d∥k(l) ∥ k(r) . The opposite behaviour can be observed
for d∦k(l) ∥ k(r) . These findings confirm Argument 1, and it
follows from Argument 2 that d∦k(l) ∥ k(r) is an observable
system.

B. Degrees of observability: Observability as a non-binary
system property

In the previous section we have established that
d∦k(l) ∥ k(r) is observable. A similar argument can be made
to show that d∦k(l)⊥k(r) is observable. In fact, the rightmost
column of Table V shows that d∦k(l)⊥k(r) reaches a lower
residual error than d∦k(l) ∥ k(r) . From Argument 3 it fol-
lows that d∦k(l)⊥k(r) has a higher degree of observability

Fig. 5. RMSE R(l)
k as a function of the number of (processed) batches k.

Second-row plots zoom into last 500 batch generations, right-column plots
show mean values ±2 empirical standard deviations of 3 seeds. Errors saturate
regardless of network complexity for the non-observable case d∥k(l) ∥ k(r)

(left), while errors decrease arbitrarily (up to some residual error due to noise
and bias) for the observable case d∦k(l) ∥ k(r) (right).

Fig. 6. Absolute angle error of the relative-orientation estimate between
segment one and two as a function of time for a randomly sampled motion
example. The left subplot shows error spikes above 100◦ due to non-
observability, whereas the complex network shows very good performance
at all times for the observable case in the right subplot.

system R(l)[°]

batch size
256 1024 2048

d∦k(l)⊥k(r) 1.33 ± 0.04 7.49 ± 6.17 1.25 ± 0.01

d∦k(l) ∥ k(r) 7.15 ± 4.53 2.44 ± 0.06 2.34 ± 0.01

d∥k(l) ∥ k(r) 61.64 ± 0.77 61.58 ± 0.38 61.61 ± 0.25

TABLE V
IMPACT OF BATCH SIZE ON RESIDUAL ERROR FOR DOUBLE-HINGE-JOINT
SYSTEM. MEAN AND STANDARD DEVIATION OF R(l)

1400:1500 IN DEGREES.



Fig. 7. Estimated distribution of the RMSE R(i)
1000:1500 and 90-percentile

Q(i)
1000:1500 (low opacity) of inter-segment orientations i (left/right split)

as estimated by the RNN-based observer. For each of the three network
complexities, the residual error increases as ϕ decreases, i.e. as the two joint
axes of the double-hinge-joint system align.

than d∦k(l) ∥ k(r) . Both systems represent an edge case:
d∦k(l) ∥ k(r) (ϕ = 0) and d∦k(l)⊥k(r) (ϕ = 90◦). In
Figure 7 we also consider two intermediate values, namely
ϕ = 5◦ and ϕ = 10◦. Figure 7 shows the estimated distribution
(obtained via kernel density estimation) of R(i)

1000:1500 and
Q(i)

1000:1500, i.e. using the last 500 batch generations. Note
that errors in either joint, left or right, are almost identical.
Systems with ϕ closer to 90◦ have a higher degree of observ-
ability. Note that every double-hinge-joint system, except for
d∥k(l) ∥ k(r) , is observable but not to the same degree.

C. Joints with higher degrees of freedom

In this work, double-hinge-joint systems served as a first
example to demonstrate the ability of the RNNo-based ap-
proach to facilitate observability assessment. The presented
approach can straightforwardly be applied to any kinematic
chain that differs in, e.g. the degrees of freedom of joints, for
a broad range of IMT problems. In Figure 8 we explore this
idea by considering systems that involve joints with higher
degrees of freedom. The RNNo achieves low estimator errors
for kinematic chains composed of a hinge joint and a biaxial
joint, whilst estimation errors are significantly higher for a
system with two spherical joints.

V. CONCLUSION

In this work we presented a novel RNN-based method
for observability assessment in complex nonlinear systems.
The purely data-driven approach trains a recurrent neural
network observer on automatically generated training data
and thereby either proves observability by finding a suitable
observer – or shows that the states cannot be inferred from
the measurements, regardless of network complexity, training
data volume, and noise/bias levels.

We successfully apply the proposed method to a range of
magnetometer-free sparse IMT systems with three kinematic
segments and two IMUs. Our results confirm prior findings on
corner cases and demonstrate how observability properties of
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Fig. 8. Estimated distribution of the RMSE R(i)
1000:1500 and 90-percentile

Q(i)
1000:1500 (low opacity) of inter-segment orientations i (left/right split)

as estimated by the RNN-based observer for three different three-segment
kinematic chains: a) biaxial joint and hinge joint with linearly dependent joint
axes; b) biaxial joint and hinge joint with linearly independent joint axes; c)
two triaxial joints, i.e. no restrictions on relative motions.

such analytically intractable systems depend on the kinematic
structure. For this example use case, we find that all double-
hinge-joint systems, except for one corner case configuration,
yield observability with estimation errors in the range of ≈ 2◦

or less for fully exciting random motions.
The proposed method enables, for the first time, a systematic

assessment of observability properties in sparse IMT systems.
It can be used to answer the pressing question which sparse
sensor setups can be used to track which motions of which
kinematic chains and thus represents an important first step
towards combining the advantages of sparse sensor setups and
magnetometer-free sensor fusion.

Beyond the purpose of assessing observability, the RNN-
based observer that is generated by the proposed method is a
promising candidate for actually solving the state estimation
task. Since it is designed on noise- and bias-affected simulation
data, it can be expected to yield reasonable performance also
on experimental data, at least for rigid mechanical setups. Our
present research aims at answering this question.

Future research will also aim at using the proposed approach
to investigate the observability properties of other sparse
IMT setups than those considered in the present contribution.
This will include setups with different numbers of segments
and sensors and different combinations of joints, both for
magnetometer-free fusion and for 9D IMUs.
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Abstract— Inertial measurement units (IMUs) are used for inertial motion tracking (IMT) in a growing number of
applications as sensor fusion methods are being advanced in three directions: magnetometer-free IMT methods that
eliminate the effect of magnetic disturbances; sparse IMT approaches that lead to reduced setup complexity; and
automatic self-calibration of sensor-to-segment positions or orientations. In this letter, we propose an approach that
combines all three achievements and, for the first time, enables plug-and-play, magnetometer-free, and sparse IMT.
This is accomplished by training a recurrent neural-network-based observer (RNNo) on just-in-time generated simulated
motion data of kinematic chains. We demonstrate that domain-specific training data augmentations lead to a trained RNNo
which zero shot generalizes to previously unseen experimental data and, thus, overcomes the sim-to-real gap. The trained
RNNo achieves a tracking error of < 4 degrees when estimating the relative pose of a three-segment kinematic chain with
two hinge joints. The proposed method offers a novel simulation-data-driven approach for solving complex sparse sensing
problems while assuring robust and plug-and-play generalizability to experimental data.

Index Terms—Sensor signal processing, inertial measurement units (IMUs), magnetometer-free, recurrent neural networks, sensor
fusion, sparse sensing.

I. INTRODUCTION

Recently, inertial measurement units (IMUs) have become smaller
and less expensive. Consequently, they are now used in numer-
ous application domains, ranging from autonomous driving [1], and
aerospace engineering [2], [3], to health applications [4], [5], [6], [7].
In many of these applications, IMUs are used to track the motion of
all components of some sort of kinematic chain that consists of rigid
segments connected by joints. Typically, one IMU per segment is at-
tached, and all gyroscope, accelerometer, and magnetometer readings
are fused to estimate the pose of the chain.

The applicability of inertial motion tracking (IMT) is often limited
by the three requirements of magnetometer data, full IMU setups, and
calibration poses. Relying on magnetometer data limits applicability
as ferromagnetic material or electronic devices, omnipresent in indoor,
real-world environments, distort the magnetic field [8], and degrade
subsequent pose estimates. To overcome this, several magnetometer-
free methods have been proposed [9], [10]. However, they require a
full IMU setup with one IMU per segment, whereas fewer sensors
than segments (sparse sensor setup), as shown in Fig. 1, would lead to
reduced effort and cost, and thus increased usability. Methods tailored
specifically to sparse sensor setups have been developed [11], [12]
that typically utilize extensive models of the system to constrain the
solution to physically feasible motion states. Finally, the requirement
of either precise knowledge of sensor-to-segment position and/or
orientation, or of calibration motion to identify the latter [13], [14],
limits the plug-and-play capabilities of IMT.

The accomplishment of simultaneously alleviating even two out of
those three requirements has rarely been achieved. The combination
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Fig. 1. Challenging IMT problem of a kinematic chain with three seg-
ments S1−3, and a sparse sensor setup consisting of only two-segment-
aligned 6D-IMUs (brown boxes) on the outer segments. The segments
are connected by two hinge joints with known and nonparallel joint
axes’ directions and joint angles α(l/r). The physical dimensionality of
the chain is assumed to be unknown and defined by r12, d, and r32.

of magnetometer-free IMT with plug-and-play capabilities has been
investigated in [9] and [10], and the combination of magnetometer-free
and sparse IMT has only been achieved in [15] and [16] by requiring
very specific chain configurations and knowledge on the physical
dimensions of the chain, which inherently restricts the method’s plug-
and-play capabilities. The latter combination is especially challenging
as the motion states may then be non- or only partially observable, i.e.,
different movements can generate the same IMU sensor data. First
results on the observability properties of such IMT problems have
been published in [17] and [18].

In this contribution, for the first time, we alleviate all three require-
ments simultaneously to achieve a first step toward magnetometer-
free, sparse IMT with plug-and-play capabilities with respect to the
physical dimensions of the kinematic chain and validate our approach
in experiment. More specifically, we present a novel data-driven
magnetometer-free approach that is able to track all relative motion
states of three-segment two hinge joint systems (cf. Fig. 1) from
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measurements of only two IMUs, one on each of the outer seg-
ments, despite large uncertainties in the sensor-to-segment position
and physical dimensionality of the chain. Our approach utilizes a recur-
rent neural-network-based observer (RNNo) [17] together with novel
nonrestrictive priors in the form of domain-specific augmentations
during in silico training, to effectively solve the sim-to-real gap. The
proposed method is, furthermore, demonstrated to converge quickly
and achieve a long-term stable tracking error of < 4 degrees for an
unseen experimental kinematic chain in a plug-and-play manner.

II. PROBLEM FORMULATION

We consider a kinematic chain consisting of three segments with
frames (coordinate systems) S1, S2, and S3 connected by two hinge
joints with known and orthogonal joint axes’ directions. Note that we
expect that the presented approach will still be valid for nonorthogonal
nonparallel joint axes, as shown in [17]. We define plug-and-play ca-
pabilities as the requirement of unknown sensor-to-segment positions
and unknown physical dimensionality of the chain and where only
broad value ranges of the parameters that define the chain’s geometry
are known. However, we assume that sensor-to-segment orientations
are known and, in the following, do not distinguish between sensor
and segment frame.

As depicted in Fig. 1, only the two outer segments are equipped with
IMUs, and each IMU contains gyroscope and accelerometer. Despite
the sparse sensor setup, the complete pose of the kinematic chain, i.e.,
the relative orientation of each segment with respect to its neighboring
segments, shall be determined for all time instances.

The resulting estimation problem is defined as

Estimate x(t ) =
(S1(t )
S2 (t )

qᵀ,
S3(t )
S2 (t )

qᵀ
)ᵀ
∈ R8

from y(t ′ < t ) ∀t
where y(t ) = (

ω1(t )ᵀ, ρ1(t )ᵀ, ω3(t )ᵀ, ρ3(t )ᵀ
)ᵀ ∈ R12 (1)

where ω1(t ), ρ1(t ) and ω3(t ), ρ3(t ) denote the angular velocity and
acceleration measurements at time t of the first IMU (attached to
segment S1) and the second IMU (attached to segment S3), respec-
tively. We describe orientations with unit quaternions, where, for
example, S1(t )

S2 (t )
q ∈ R4 describes the orientation between segment S1

and segment S2. Finally, we assume that the kinematic chain is in
motion most of the time such that there is some degree of excitation.

III. RECURRENT NEURAL NETWORKS FOR
SPARSE IMT

In this section, we propose a method that solves the problem defined
in (1) by training an RNNo on a virtually endless stream of just-in-time
generated training data of simulated motion, where all ground truth
state information are readily available. The trained RNNo then zero
shot generalizes to data from an experimental realization of the sparse
IMT problem (1).

RNNo is a recurrent neural-network-based observer that is obtained
by stacking gated recurrent unit (GRU) and feedforward layers to
create a neural network that solves (1) by mapping y(t ′ < t )→ x(t ) ∀t .
For optimization, we utilize the Adam optimizer, gradient clipping,
lookahead, and truncated backpropagation through time to train the
RNNo on data generated by the random chain motion generator
(RCMG). The RCMG simulates random chain motion and outputs
the sequences x(t ), y(t )∀t , as defined in (1), where each sequence is
60s in duration. At each training step, 512 sequences are stacked to

build a large batch size. Additional details regarding the RNNo and
the optimization strategy can be found in [17], and in the following,
we propose three augmentations to the RCMG to enrich the training
data to effectively close the sim-to-real gap.

A. Range of Motion

As a first augmentation to the RCMG, we utilize the fact that
segments are solid objects that cannot move through one another
by enforcing that both hinge joint angles are within [−π, π ) at all
times. We include this augmentation to encourage the RNNo to learn
to predict physically feasible state trajectories. In order to generate
random chain motion, the RCMG needs routines to sample both hinge
joint angle trajectories α(l/r)(t ). We propose two routines for sampling
in the presence of the range of motion restriction α(l )(t ), α(r)(t ) ∈ R ∈
[−π, π )∀t . Both routines start with the previous (or initial) hinge joint
angle configuration αprev = α(tprev) ∈ [−π, π ) at timepoint tprev ≥ 0.
We then sample the next hinge joint angle αt at timepoint t using the
following algorithm.

Random Joint Angle Trajectory Routine used by the RCMG
to generate random hinge joint angle trajectories and to simulate
training data for RNNo.

Require: tprev ≥ 0 {previous timepoint}
Require: �t< ≥ 0 {lower bound for time delta between t and
tprev}

Require: �t> > �t< {upper bound for time delta between t and
tprev}

Require: αprev ∈ [−π, π ) {previous angle value}
Require: dα< ≥ 0 {lower bound for absolute angular velocity}
Require: dα> > dα< {upper bound for absolute angular
velocity}

1: �t ← U(�t<, �t>) {sample uniformly time delta between
t and tprev}

2: p̄← 0.5(1− αprev

π
) {average parity, i.e., average decision

outcome whether αt − αprev will increase or decrease}
3: p← 2sampleBernoulli( p̄)− 1 {actual decision

outcome}
4: α<

t ← clip(αprev + pdα<�t,−π, π ) {lower bound for αt }
5: α>

t ← clip(αprev + pdα>�t,−π, π ) {upper bound for αt }
6: if α<

t > α>
t then

7: α<
t , α>

t ← α>
t , α<

t {swap if lower > upper}
8: end if
9: αt ← U(α<

t , α>
t )

10: t ← tprev +�t

The tuple of αprev, tprev, αt , and t is then cosine interpolated and
resampled to match the desired sampling rate (here: 100 Hz). We refer
to the routine as written above by the name “balanced.” Replacing
line 2 in the above algorithm by p̄← 0.5 yields the second routine,
which we refer to as “unbalanced.” Note that “balanced” will result in
a tendency for hinge joint angles to move away from π .

For both routines, the tuple �t<,�t>, dα<, dα> can be interpreted
as the parameters that define the motion distribution for both hinge joint
angles. Note that these parameters have an intuitive physical meaning.
As an example, the reader can consider one arm stretched out, with
the palm facing upward, and then moving the palm toward the head.
For the elbow joint, typical values for �t and dα would be ≈ 1s and
≈ 120 deg

s .
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TABLE 1. Randomized Geometries of the RCMG

Fig. 2. 3D-printed kinematic chain used for recording experimental
data. Three segments (black) connected by two hinge joints (white) with
nonparallel joint axes. A sparse set of two IMUs (orange) are attached
to the outer segments. Gray spheres are OMC markers.

B. Randomized Forward Kinematics

The RCMG randomizes at which node of the kinematic chain
the floating base attaches before performing forward kinematics for
generating training data. The global translation can attach at one of the
four points in the kinematic chain, as illustrated in Fig. 1. Similarly,
the global rotation can attach at one of the three segments. We add
this augmentation to avoid the RNNo learning asymmetry in the
IMU measurements. To motivate this, consider the following example:
Naively, we may always attach the floating base to the first IMU (as
depicted by r1 in Fig. 1). Then, only the specific force measurements of
the second IMU will include artifacts due to centrifugal forces. RNNo
might then dutifully learn this pattern but reduce the RNNos ability to
generalize.

C. Randomized Geometry

The RCMG randomizes the chain geometry (physical dimension-
ality of the kinematic chain and sensor-to-segment positions) before
simulation. The geometry that influences the measurements when it is
changed is completely defined by the three 3D vectors r12, d, and r32,
as illustrated in Fig. 1. We randomize the geometry for every sequence
generated by the RCMG. We draw each of the nine parameters ac-
cording to Table 1, where U(lower, upper) denotes a, on both limits
inclusive, uniform distribution. Comparing Table 1 with Fig. 2, we
can see that for, e.g., S2 (t )d (vector connecting both hinge joints),
the longitudinal x-component is randomized across a generous value
range from 0.1 to 0.35m, which includes the true experimental length
of ≈ 0.2m. This augmentation encourages the RNNo to implicitly
estimate the chain geometry for broad applicability, even under large
geometric uncertainties in practice.

IV. EXPERIMENTAL EVALUATION

In this section, we evaluate the proposed method (cf. Section III)
on a suitable experimental realization of the sparse IMT problem (cf.
Section II). In the following, we will first describe the experimental
setup, and then validate the RNNos long-term stability and initial
convergence. Finally, we will present an exhaustive ablation study that
presents the contribution of each proposed augmentation individually.

Fig. 3. Estimation performance of the trained RNNo on one exemplary
sequence. After a short initial convergence, the RNNo closely tracks
both hinge joint angles. Mean absolute error (MAE) and root-mean-
square error (RMSE) are calculated after convergence (2s) for each
sequence.

Fig. 4. Initial convergence performance of the trained RNNo across
all 15 sequences. RNNo consistently convergences within < 2s after
convergence errors remain low at all times.

A. Experimental Setup

To evaluate the RNNos performance, we use an experimental setup
that is compliant with the sparse IMT problem considered here (cf.
Section II). To this end, we have performed a measurement session
of ≈ 120s to assess both long-term stability, as well as initial con-
vergence. The 3D-printed kinematic chain has been moved randomly
and is in motion most of the time. Fig. 2 showcases the 3D-printed
kinematic chain that was used to record the experimental data, i.e.,
the magnetometer-free IMU measurements and ground truth pose
measurements, using an optical motion capture (OMC) system. As pre-
processing, we have downsampled the OMC measurements from 120
to 100Hz using spherical linear interpolation, and time synchronization
with IMU measurements (that already record natively at 100Hz) is
achieved by cross correlation of the norms of the measured (IMU)
and calculated angular velocities (OMC). Reference orientations are
obtained by spanning an orthogonal coordinate system using three
markers per segment.

B. Initial Convergence

To assess the RNNos ability to quickly converge to a correct
estimate, we have extracted 15 sequences of 20s duration. In these
sequences, the initial orientation of the kinematic chain is unknown.
Fig. 3 shows one exemplary sequence, and Fig. 4 showcases the per-
formance across all sequences. The RNNo consistently converges to
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TABLE 2. Effect of Each Augmentation on the Performance of the
Trained RNNo (RoM: Range of Motion, RandForKin: Randomized For-
ward Kinematics, and RandGeo: Randomized Geometry)

hinge joint angle estimates with low estimation errors within <2s, and
errors remain low after convergence at all times. This showcases the
RNNos applicability despite unknown initial orientations, unknown
sensor-to-segment positions, and unknown physical chain dimensions,
and it highlights the RNNos plug-and-play capabilities.

C. Long-Term Stability

To assess long-term stability, we apply the RNNo to a 70s continuous
experimental estimation task. Excluding 2s for initial convergence,
the RNNo was able to reliably track both hinge joint angles with the
following errors: MAE 2.74 / 3.15, RMSE 3.95 / 4.26, and 95%-
percentile 7.96 / 9.07 degrees (joint 1/joint 2). This shows that the
trained RNNo can successfully track both hinge joint angles even on
longer sequences.

D. Ablation Study

Finally, we present the contribution of each proposed augmentation
individually (cf., Section III) on the performance of the trained RNNo.
Table 2 lists the MAE in degrees across both hinge joints (as depicted on
the right side of Fig. 4) for all combinations of disabled augmentations.
With all three augmentations disabled, the RNNo does not generalize,
resulting in an experimental MAE > 70 degrees. Only if all three aug-
mentations are enabled can the RNNo achieve an experimental MAE
< 4 degrees, despite the magnetometer-free and sparse sensor setup,
and which is in line with errors typically only achieved with state-
of-the-art sensor fusion methods for full IMU setups (one sensor per
segment) [19].

V. CONCLUSION

In this contribution, we have successfully shown that a recurrent
neural network that is trained in simulation can generalize in practice to
enable sparse and magnetometer-free motion tracking of experimental
and unseen kinematic chains. This plug-and-play IMT capability is
achieved by domain-specific augmentations that are applied during
the training of an RNNo to effectively close the sim-to-real gap. After
rapid initial convergence, the trained RNNo can achieve long-term
stable tracking errors of < 4 degrees. The results indicate that RNNos
can be used for plug-and-play IMT in magnetically disturbed envi-
ronments with minimal efforts, and thus achieve unprecedented high
applicability and usability, at unprecedented low cost.

The presented approach constitutes a proof-of-concept of how com-
plex sensing problems can effectively be solved by first proving observ-
ability in simulation and utilizing a neural-network-based observer,
and then realizing generalization in practical settings by suitable aug-
mentations to the simulation. Interesting directions for future work are:
conducting an extensive experimental validation, including a variety
of motion aspects; extending the RNNo to joint setups that include
a higher degree of freedom joints; and enabling RNNo to generalize
across joint axes and sensor-to-segment orientations.
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Abstract: In this paper, we extend the Recurrent Inertial Graph-based Estimator (RING),
a novel neural-network-based solution for Inertial Motion Tracking (IMT), to generalize
across a large range of sampling rates, and we demonstrate that it can overcome four
real-world challenges: inhomogeneous magnetic fields, sensor-to-segment misalignment, sparse
sensor setups, and nonrigid sensor attachment. RING can estimate the rotational state of
a three-segment kinematic chain with double hinge joints from inertial data, and achieves
an experimental mean-absolute-(tracking)-error of 8.10 ± 1.19 degrees if all four challenges
are present simultaneously. The network is trained on simulated data yet evaluated on
experimental data, highlighting its remarkable ability to zero-shot generalize from simulation
to experiment. We conduct an ablation study to analyze the impact of each of the four
challenges on RING’s performance, we showcase its robustness to varying sampling rates, and we
demonstrate that RING is capable of real-time operation. This research not only advances IMT
technology by making it more accessible and versatile but also enhances its potential for new
application domains including non-expert use of sparse IMT with nonrigid sensor attachments
in unconstrained environments.

Keywords: Recurrent Neural Networks, Inertial Measurement Units, Orientation Estimation,
Sparse Sensing, Magnetometer-free, Sensor-to-Segment Alignment

1. INTRODUCTION

Numerous recent developments in biomedical engineering
applications require precise estimation of the motion of
articulated bodies in space. Some prominent examples
include unobtrusive human motion tracking outside the
lab (Garćıa-de Villa et al., 2023a), and realizing intel-
ligent symbiosis between humans and robots that enter
immersive environments (Dafarra et al., 2024). Inertial
Measurement Units (IMUs) are used in all these systems
because of their unique ability to track movements of
articulating rigid bodies of Kinematic Chains (KCs), in
a cheaper and more reliable way than State-Of-The-Art
(SOTA) multi-camera systems that require continuous line
of sight.

All IMU-based motion tracking use cases heavily rely
on Inertial Motion Tracking (IMT) algorithms that fuse
different measurement signals to estimate motion param-
eters. This, however, is inherently limited by the following
four key challenges (Garćıa-de Villa et al., 2023b):
(1) Inhomogeneous magnetic fields indoors and near fer-
romagnetic materials or electric devices;
(2) Sensor-to-segment alignment that involves determining
joint positions and axis directions in local sensor coordi-
nates;
(3) Solving sparse problems where some segments of the

1 

2 

3

0 Simultaneously overcome
four key IMT challenges:

Fig. 1. A three-segment KC with two IMUs (blue boxes).
The graph representation of the KC is given by the
parent array λ = (0, 1, 2)⊺. The neural network-based
multiple-IMU sensor fusion algorithm RING receives
the graph representation and IMU data as input and
estimates the rotational state of the KC, overcoming
all four key challenges of IMT simultaneously.

KC are not equipped with a sensor;
(4) Addressing real-world disturbances due to nonrigid
sensor attachment and caused by large acceleration signals
from impacts and soft tissue artifacts.
In recent years, many highly specialized methods have
been proposed to address these challenges. We will provide



a brief overview of the latest and most notable develop-
ments accompanied by recent comprehensive methodolog-
ical overviews. First, a multitude of different kinematic
constraints are proposed to replace missing magnetometer
heading information, as reviewed in Weygers et al. (2023).
Furthermore, recent general-purpose (Caruso et al., 2021)
magnetometer-free attitude estimators by Laidig and Seel
(2023) achieved remarkable accuracy improvements in
comparison with, e.g., the widely used filters from Madg-
wick (2010) and Mahony et al. (2008). Second, several al-
gorithms have been developed to achieve automatic sensor-
to-segment alignment, as outlined by Vitali and Perkins
(2020) for specific joints with full sensor setups (Taetz
et al., 2016; McGrath et al., 2018; Weygers et al., 2021).
Third, a recent trend in sparse sensor setups is visible
with methods that either use a limited number of sensors
but include magnetometer measurements (Sy et al., 2020,
2021; Huang et al., 2018; von Marcard et al., 2017; Zheng
et al., 2021) or are magnetometer-free (Grapentin et al.,
2020; Bachhuber et al., 2023; Van Wouwe et al., 2023; Yi
et al., 2021, 2022). Finally, the literature on IMT methods
to overcome real-world disturbances is limited and focuses
on late interception by outlier rejection techniques (Rem-
merswaal et al. (2021)) or further advances in connection
constraints (Garćıa-de Villa et al., 2021).

Real-world IMT applications typically present multi-
faceted challenges, requiring data-driven state observers
like the Recurrent Neural Network-based Observer (RNNO)
(Bachhuber et al. (2023)) that can effectively address the
increasing complexity. To overcome a redundant imple-
mentation task in retraining RNNOs for every combination
in a large grid of IMT challenges, we proposed the Recur-
rent Inertial Graph-based Estimator (RING) (Bachhuber
et al. (2024)) as a pluripotent approach that solves IMT
Problems (IMTPs) of tree-structured systems.

Despite RING’s ability to provide a solution to a variety
IMT challenges, its real-world applicability for a combina-
tion of all the aforementioned IMT challenges has not been
investigated and their individual impact are unknown.
Furthermore, while RING is aimed to be applicable in
a plug-and-play fashion, it still requires a specific fixed
sampling rate, which vastly limits its applicability in prac-
tice. Moreover, the real-time capability in inference has
not been explored. In this work, we enhance and validate
RING’s usability with the following contributions:

(1) Extending RING’s usability by enabling applicability
to data from a broad range of sampling rates.

(2) Solve for the first time the four IMT challenges at
once.

(3) Show zero-shot experimental generalizability in an
extensive ablation study to gain insights on the per-
formance of RING on individual IMT challenges.

(4) Analyze the real-time capability of RING.

2. PROBLEM FORMULATION

Consider a KC with three segments that are connected by
hinge joints with arbitrary and unknown joint axes direc-
tions. Only the outer bodies are equipped with nonrigidly
attached IMUs. A KC is a rigid-body system and it con-
sists of multiple rigid objects (segments) that are rigidly
attached to coordinate systems (bodies). In general, the

topology of such a rigid-body system can be represented
by a Connectivity Graph (CG) (Featherstone, 2008) where
nodes represent bodies and edges represent degrees of
freedom in the system. Here, for each segment there is one
body with one segment attached to it, such that there is a
one-to-one correspondence between segments and bodies.
After the N bodies have been numbered, the CG can be
encoded via a parent array λ ∈ NN where λ[i] is the body
number of the parent of body i. For a three-segment KC,
this graph representation and the one parent array utilized
in this work is shown in Figure 1.

In this work, the goal is to estimate the complete rotational
state of the KC up to a global heading offset (Weygers
et al., 2023). We approach this through a filtering problem
formulation, where an estimate of the complete rotational
state x(t) is obtained at every time instant t from the
current and all previous IMU measurements y(t′ ≤ t)
that are combined into one measurement signal y(t) ∈ R12

defined as

y(t) =
(
ω1(t)

⊺,ρ1(t)
⊺,ω3(t)

⊺,ρ3(t)
⊺
)⊺

∀t (1)

where ωi(t),ρi(t) denote gyroscope and accelerometer
measurements at time t of the IMU that is nonrigidly
attached to body Si ∈ {1, 3}. The rotational state x(t) ∈
H3 of the KC is straightforwardly defined by

x(t) =
(

1
0q(t)

⊺, 21q(t)
⊺, 32q(t)

⊺
)⊺

∀t (2)

where i
jq(t) denotes the orientation from body Si to body

Sj at time t and where body 0 denotes the earth frame.
Note that the 1

0q can only be estimated up to a heading
offset from 6D measurements.

Real-world applicability requires solving all of the follow-
ing challenges of the IMTP that is said to

• be magnetometer-free (or 6D in contrast to 9D)
if the IMUs measure only three-dimensional angular
rates and specific forces, and not provide magnetome-
ter readings.

• require sensor-to-segment alignment when hinge
joint axes directions are unknown.

• be sparse if not every segment that constitute the
KC has an IMU attached. Here,the middle segment
does not have an IMU attached. An IMTP that has
an IMU attached to each body is said to have a full
IMU setup.

• suffer from motion artifacts if the IMUs are not
rigidly attached to the respective bodies, such that
there can occur transnational and rotational motions
between the segment and IMU. An IMTP without
motion artifacts assumes that there cannot exist any
relative motion between segment and IMU.

From this, it follows that the IMTP considered here is
magnetometer-free, requires sensor-to-segment alignment,
sparse, and suffers from motion artifacts.

3. METHODS

In this work, we extend the Neural Network-based (NN-
based) multiple-IMU sensor fusion algorithm from Bach-
huber et al. (2024). We address all four key IMT challenges
outlined in Section 2, while enabling sampling rate robust-
ness and showcase that RING is real-time capable. This is



achieved by both adapting the training procedure (Sec-
tion: 3.1) and the NN-based multiple-IMU sensor fusion
algorithm (Section: 3.2).

3.1 Simulated Training Data at Various Sampling Rates

RING (Bachhuber et al., 2024) is trained on large amounts
of simulated input-output data at various sampling rates.
The procedure that generates the data for the training
of RING is called the Random Chain Motion Generator
(RCMG) Bachhuber et al. (2024). It generates extensively
augmented random motions of KCs with:

(1) different number of segments,
(2) randomized segment lengths,
(3) randomized IMU placement,
(4) randomized joint axes directions, and
(5) rigidly or nonrigidly attached IMUs (by simulat-

ing spring-damper-systems with randomized damping
and stiffness parameters) (Bachhuber et al., 2024).

From these random KC motions we compute IMU and
orientation measurements, but in this work at various
sampling rates. These form the input-output pairs for
training RING.

RCMG can be summarized as a function that only from
PseudoRNG returns the training pair

• X ∈ RT×N×10, whereX[:, i, :6] is the 6D IMU data for
body i (if it is not dropped out), and where X[:, i, 6:9]
is the joint axis direction of the hinge joint between
body i and its parent (if it is not dropped out, and
if the parent is not the base), and where X[:, i, 10] is
the inverse sampling rate 1

F , and

• Y ∈ HT×N where Y[:, i] is the orientation from body
i to its parent λ[i], and

where T is the number of timesteps, and N is the number
of bodies in the KC (here N = 3).

To achieve a wide coverage, training data is generated for
sampling rates drawn from

F ∈ {40, 60, 80, 100, 120, 140, 160, 180, 200}Hz

and to allow for efficient training data batching, the
sequence duration is adjusted based on the sampling rate
to achieve a common number of timesteps of T = 6000. A
training batch is then built up by stacking 512 sequences,
and additional details regarding the RCMG can be found
in Bachhuber et al. (2024).

3.2 Neural Network Architecture: RING with Sampling
Rate Input

We use a NN trained on data generated using the proce-
dure described in Section 3.1. The network architecture
is based on RING (Bachhuber et al., 2024), a powerful
multiple-IMU sensor fusion algorithm that is composed of
a decentralized network of message-passing Recurrent NNs
(RNNs). Most notably, RING’s parameters are defined on
a per-node level and shared across all nodes in the graph.
This design enables RING to be applied to broad range
of IMTPs with a single set of parameters and enables its
exceptional pluripotency.

In this work, the architecture of RING is extended to
additionally accept a sampling rate input, such that the

dimensionality of RING’s per-timestep and per-node input
increases by one. To summarize, RING can be viewed as
the following step function that maps the previous state
of RING ξt-1 ∈ RN×2H and network input Xt ∈ RN×10 at

time t to the next RING state ξt and output Ŷt ∈ HN ,
i.e.,

ξt, Ŷt = ring (ξt-1,Xt,λ) ∀t (3)

where H ∈ N is the hidden state dimensionality, ξ0 = 0,
and where the vector λ is the parent array, defined in
Section 2. Internally, RING has the parameters of

• the Message-MLP-network fθ : RH → RM , and
• the Stacked-GRUCell-network gθ : R2H × R2M+10 →

R2H which consists of the sequence of Gated-
Recurrent-Unit(GRU)Cell, LayerNorm, GRUCell (Cho
et al., 2014), and

• the Quaternion-MLP that combines a Layernorm,
and a MLP-network hθ : RH → R4, and

where M ∈ N is the dimensionality of the messages that
are passed along the edges of the graph. Note that the two
GRUCells each have a hidden state dimensionality of H,
thus the hidden state of RING is of dimensionality of 2H.
Then, equation (3) consists of several consecutive steps,
for all N bodies:

(1) Messages Mt ∈ RN×M are computed using fθ.
(2) Messages are passed along the edges of the graph.
(3) The hidden state is updated using gθ.

(4) The unnormalized output Ỹ ∈ RN×4 is computed
using the Quaternion-MLP.

(5) The output is normalized to allow interpretation as
unit quaternions. The final RING output is one unit
quaternion per node Ŷt ∈ HN .

RING is trained by comparing Ŷt to the ground truth Yt

which is provided by the RCMG, and by minimizing the
mean-squared orientation error.

Additional details regarding the the RING architecture
and its optimization strategy can be found and is exactly
the same as in Bachhuber et al. (2024).

A software implementation of the RCMG and RING,
and the source code for creating the results presented in
Section 4.3 are hosted on GitHub 1 .

4. RESULTS AND DISCUSSION

In this section, we evaluate the accuracy of RING’s orien-
tation estimation, trained in simulation only, when applied
to experimental data (see Section 4.1) of the problem spec-
ified in Section 2. The performance of RING is compared
to (SOTA) methods (see Section 4.3).

It is remarkable, that RING can solve an experimen-
tal IMTP that combines all four challenges in IMT
(magnetometer-free, unknown sensor-to-segment align-
ment, sparse sensor setup, and nonrigid sensor attach-
ment) simultaneously, despite being trained on simulated
data only.

1 https://github.com/SimiPixel/ring

https://github.com/SimiPixel/ring


Fig. 2. Experimental 3D-printed KC used to validate the
RING algorithm. To validate that RING overcomes
the IMT challenge of non-rigid sensor placement,
each segment of the KC has an IMU attached using
foam padding. Additionally, a second IMU is rigidly
attached to assess the impact of the foam padding
on the accuracy of orientation estimates. Figure from
Bachhuber et al. (2024).

4.1 Experimental Setup and Data Acquisition

We utilize a five-segment KC to record the experimental
data but only the data for the given IMTP relevant parts
of the KC are used for evaluation. The five-segment KC
includes a singular spherical joint followed by three hinge
joints, each oriented along the x, y, and z axes, respectively.
Each segment of the KC was equipped with two IMUs: one
rigidly attached to the segment and another nonrigidly
attached using foam padding, as depicted in Figure 2.

Two distinct trials were conducted, involving random
movements of the five-segment KC. Here, two three-
segment KCs are thus extracted, one with joint axes di-
rection x and y, and one with y and z. During evaluation,
the first trial spans a duration of 66 s and features a
diverse range of motions. Additionally, the second trial,
with a length of 68 s, includes periods where the entire KC
remained stationary. Overall, this results in four trials in
total.

We refer to (Bachhuber et al., 2024) for additional details
regarding the experimental setup and preprocessing.

Table 1. Experimental magnetometer-free ori-
entation estimation accuracy (in degrees) of
RING compared to two SOTA methods. The
IMUs are nonrigidly attached and to coun-
teract this influence both VQF and RNNO
are used in combination with a low-pass filter
with optimized cutoff-frequency. All methods

are evaluated at 100Hz.

Method S. Misal.1 6D Sparse MAE [deg]

VQF2 ✓ ✗ ✗ 18.45± 9.10
RNNO3 ✗ ✓ ✓ 8.64± 4.13
RING ✓ ✓ ✓ 8.10± 1.19

1 Sensor-to-segment Misalignment
2 Laidig and Seel (2023)
3 Bachhuber et al. (2023)

4.2 Evaluation Metrics and Baselines

The ground truth orientations for the experimental trials
(see Section 4.1) were recorded using optical motion cap-
ture. Orientation estimation accuracy is quantified using

the Mean-Absolute-(tracking)-Error (MAE) in degrees.
Here, the mean calculation reduces the dimensions of the
different trials, time, and three orientations (including
inclination and two relative orientations). In the time di-
mension, initial 5 s of each trial were deliberately excluded
from the MAE calculations. This decision was made to
ensure that the recorded errors accurately reflected the
system’s performance post-convergence.

To the best of the authors’ knowledge, there exists no
alternative method that can be applied to the IMTP
as described in Section 2. However, two SOTA baseline
methods can be identified after simplifying the IMTP so
that it does not contain all four challenges simultaneously.
The first baseline is obtained by using conventional IMT
methods, that is, using a full 9D IMU setup and track-
ing each segment independently. The SOTA method for
such single-IMU sensor fusion is VQF Laidig and Seel
(2023). The second baseline is obtained after eliminating
the challenge of anatomical calibration. Under the assump-
tion of known joint axes direction, RNNO can be applied
Bachhuber et al. (2023). Note that since two KCs with
different directions of the joint axes are used for exper-
imental validation (see Section 4.1), two trained RNNO
networks are required. To compensate for the violation
of the rigid-IMU-attachment assumption, both baselines
additionally utilize a low-pass filter. The cutoff frequency
was grid searched and we report only the best result for
each baseline method.

4.3 Experimental Validation of RING

The trained RING is applied to experimental data from
an IMTP that combines the four challenges of non-
rigid IMU attachment, misaligned sensors and segments,
magnetometer-free measurements, and a sparse sensor
setup. The MAE in the orientation estimate for RING and
the two SOTA baseline methods are reported in Table 1
and confirms that RING outperforms both alternative
methods despite solving the more challenging IMTP. The
first 15 seconds of one example sequence are shown in
Figure 3 and demonstrate RING’s prediction performance
and quick convergence.

In Table 2, we conduct an ablation study to analyze the
impact of nonrigid IMU attachment, sensor-to-segment
alignment, and sparse IMU setup on RING’s orientation
estimation accuracy.

In Figure 4, the experimental data is resampled to a
wide range of sampling rates to assess the robustness of
RING w.r.t. the sampling rate. RING achieves a nearly
constant orientation estimation accuracy which only, un-
surprisingly, degrades slightly for low sampling rates.

4.4 Real-time Applicability of RING

By design, RING can be applied online as it is defined by a
step function (see eq. (3)) that, based on the measurements
at a certain timestep (see eq. (2)), returns an updated
internal state and the rotational state estimate (see eq. 1)
of the KC. Therefore, if the step function executes faster
than the sampling rate requires, then it is said to be real-
time capable. After compilation, the runtime of the step
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Fig. 4. Experimental magnetometer-free motion tracking

accuracy (in degrees) of RING across various sam-
pling rates. RING achieves a nearly constant estima-
tion accuracy across sampling rates ranging from 50
to 200Hz. Uncertainties are one standard deviation.

function of RING is (794±16.7)µs on a M2 Macbook Pro.
Thus, RING is real-time capable up to ≈ 1000Hz.

5. CONCLUSION

In this work, we have extended RING, a powerful IMT
method, to generalize across a wide range of sampling

Table 2. Ablation Study of the impact of in-
dividual IMT challenges on RING’s experi-
mental orientation estimation accuracy. In all
scenarios, RING uses only magnetometer-free
or 6D IMUs. Ablation study conducted at a

sampling rate of 100Hz.

Nonrigid S. Misal.1 Sparse MAE [deg]

✗ ✗ ✗ 3.85± 0.25
✗ ✗ ✓ 3.69± 0.22
✗ ✓ ✗ 4.00± 0.17
✗ ✓ ✓ 4.36± 0.49

✓ ✗ ✗ 6.13± 0.57
✓ ✗ ✓ 5.89± 1.25
✓ ✓ ✗ 7.38± 0.50
✓ ✓ ✓ 8.10± 1.19

1 Sensor-to-segment Misalignment

rates, and we have showcased that it can simultaneously
overcome the four key challenges in IMT: inhomogeneous
magnetic fields, sensor-to-segment misalignment, sparse
sensor setups, and nonrigid sensor attachment. With an
experimental tracking MAE of 8.10 ± 1.19 degrees if all
four challenges are present simultaneously, RING accu-
rately estimates the rotational state of a three-segment
KC from IMU measurements. RING leverages a decentral-
ized network of message-passing RNNs that is trained on
simulated data but is capable of zero-shot generalization to
real-world data. Our evaluations reveal RING’s superiority
over SOTAmethods in terms of accuracy and applicability,
additionally, we demonstrate RING’s robustness across
various sampling rates, and its real-time capability. By
enabling plug-and-play usability and extending the ap-
plicability of inertial motion capture technology, RING
not only advances the field but also opens new avenues
for research and practical applications in environments
previously deemed challenging.
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Abstract

This paper introduces a novel ML-based method for Inertial Motion Tracking (IMT) that
fundamentally changes the way this technology is used. The proposed method, named RING1

(Recurrent Inertial Graph-Based Estimator), provides a pluripotent, problem-unspecific
plug-and-play IMT solution that, in contrast to conventional IMT solutions, eliminates the
need for expert knowledge to identify, select, and parameterize the appropriate method.
RING’s pluripotency is enabled by a novel online-capable neural network architecture
that uses a decentralized network of message-passing, parameter-sharing recurrent neural
networks, which map local IMU measurements and nearest-neighbour messages to local
orientations. This architecture enables RING to address a broad range of IMT problems
that vary greatly in aspects such as the number of attached sensors, or the number of
segments in the kinematic chain, and even generalize to previously unsolved IMT problems,
including the challenging combination of magnetometer-free and sparse sensing with unknown
sensor-to-segment parameters. Remarkably, RING is trained solely on simulated data, yet
evaluated on experimental data, which indicates its exceptional ability to zero-shot generalize
from simulation to experiment, while outperforming several state-of-the-art problem-specific
solutions. For example, RING can, for the first time, accurately track a four-segment
kinematic chain (which requires estimating four orientations) using only two magnetometer-
free inertial measurement units. This research not only makes IMT more powerful and less
restrictive in established domains ranging from biomechanics to autonomous systems, but
also opens its application to new users and fields previously untapped by motion tracking
technology. Code and data is available here.

1one to track them all
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Figure 1: RING is a ML-based method that provides a versatile, pluripotent IMT solution applicable
across a broad range of challenging IMT problems, designed for use without the need for expert knowledge.
Remarkably, RING is trained solely on simulated data, yet zero-shot generalizes to real-world experiments
and outperforms several problem-specific state-of-the-art solutions.

1 Introduction

In the domain of multi-agent systems, structural policies have shown great potential for the control of complex
agents; meanwhile, Recurrent Neural Networks (RNNs) are an established choice for sequential data. The
potential of their combination for the analysis of structural sequential data has rarely been investigated and
exploited. This combination seems particularly promising for state estimation in graph-structured systems,
such as, for example, for IMT of Kinematic Chains (KCs).

The need for reliable and accurate estimation of the orientation, attitude, or pose of articulated objects in
three-dimensional (3D) space spans across various application domains ranging from aerospace engineering
(Euston et al., 2008; Givens & Coopmans, 2019) to health applications (Buke et al., 2015; López-Nava &
Muñoz-Meléndez, 2016; Seel et al., 2020). Inertial Measurement Units (IMUs), which typically comprise a 3D
accelerometer, a 3D gyroscope, and a 3D magnetometer, have become smaller and less expensive within the
last two decades and have therefore rapidly become the most promising technology for accurate, reliable, and
inexpensive motion tracking in rigid bodies and KCs, especially since camera-based systems are typically
more expensive, more restrictive, and suffer from occlusion (von Marcard et al., 2017; Huang et al., 2018).

However, fusing the available measurement signals to estimate the desired orientations requires advanced
IMT algorithms that typically need to overcome a combination or all of the following three main IMT
challenges (Seel et al., 2020): (1) inhomogeneous magnetic fields in indoor environments and in proximity of
ferromagnetic material or electric devices; (2) sensor-to-segment calibration, i.e. identifying the joint position
and axis orientations in local sensor coordinates; (3) solving sparse problems in which some segments of the
KC are not equipped with a sensor, to improve the usability and reduce costs.

In recent years, numerous highly specialized methods have been proposed to address these challenges.
Magnetometer-free methods have been developed to estimate the relative orientation between two adjacent
segments by exploiting different kinematic constraints (Kok et al., 2014; Laidig et al., 2017; Lehmann et al.,
2020; 2024). Moreover, numerous general-purpose magnetometer-free attitude estimators have been proposed
(Mahony et al., 2008; Madgwick, 2010; Seel & Ruppin, 2017; Weber et al., 2021; Laidig & Seel, 2023). Several
algorithms were developed to achieve sensor-to-segment calibration for specific kinematics with full sensor
setups (Taetz et al., 2016; McGrath et al., 2018; Olsson et al., 2020). Finally, a variety of sparse IMT methods
have been developed that either use a limited number of sensors while still depending on magnetometers (von
Marcard et al., 2017; Huang et al., 2018; Sy et al., 2020; 2021; Zheng et al., 2021) or are magnetometer-free
(Grapentin et al., 2020; Yi et al., 2021; 2022; Bachhuber et al., 2023; Van Wouwe et al., 2023).

In summary, there exists a plethora of methods, each tailored to a very specific application, such as
magnetometer-free tracking of a single-degree-of-freedom (1-DoF) joint (Lehmann et al., 2020), or human

2



Published in Transactions on Machine Learning Research (10/2024)

pose estimation from six IMUs, as detailed in Yi et al. (2021). To apply IMT, the user must successfully
identify the method that is suitable for the given problem and typically specify various parameters such as
joint axes directions and sensor placement. Therefore, the user must be an expert in the field of IMT, which
strongly limits the use of IMUs in many application domains. To make matters even worse, a given problem
might require a nontrivial combination of methods which may exclude each other, e.g., the tracking of a
sparse three-segment KC currently requires known joint axes directions (Bachhuber et al., 2023), but the
method that estimates the joint axes directions does not allow for a sparse sensor setup (Olsson et al., 2020).

What if, instead of a plethora of methods, we had a single pluripotent method that can be used for, e.g.,
magnetometer-free tracking of 1-DoF joints, and the tracking of sparse sensor setups with known or even
unknown joint axes directions? What if we had one to track them all?

In this work, we demonstrate that ML methods can be used to, for the first time, achieve this goal. We
propose a method, named RING, that combines a novel neural network architecture, named RINGCell, with
an elaborate training data simulation, the Random Chain Motion Generator (RCMG). The key insight that
enables the pluripotency of RING is that a given system in an Inertial Motion Tracking Problem (IMTP)
can be viewed as a graph where nodes represent segments and edges represent a single DoF. Then, a shared
set of parameters can be applied on a decentralized, per-node level, where only local IMU measurements
are observed and only the local estimation problem is solved, i.e., the orientation relative to the parent is
estimated. Information exchange between nodes is enabled by passing messages along the edges of the graph.

We show that RING can be used to plug-and-play solve a range of challenging magnetometer-free sparse or
non-sparse motion tracking problems with a single trained neural network and that it even solves previously
unsolved challenging IMTPs, such as, e.g., the tracking of a triple-hinge-joint system with only two IMUs. We
demonstrate that although RING is trained solely on simulated data, it zero-shot generalizes to experimental
data and aligns with various state-of-the-art (SOTA) results.

2 Related Works

As mentioned above, there exists a plethora of highly specialized methods in the field of IMT, but there is no
single pluripotent solution that solves a variety of IMTPs. Even the use of ML methods for IMT has so far
only led to specific solutions for single IMTPs. RNNs have been used in Weber et al. (2021) to achieve SOTA
attitude estimation, and in Bachhuber et al. (2023) to successfully track a specific sparse KC. Deep learning
has also been used for human motion capture, where the full-body pose is estimated from typically six or
more IMUs, and previous work has shown promising results (von Marcard et al., 2017; Huang et al., 2018;
Zheng et al., 2021; Yi et al., 2021; 2022; Van Wouwe et al., 2023; Puchert & Ropinski, 2023). However, while
addressing a challenging problem, these methods are limited to human motion capture with one specific sensor
setup and assume statistical patterns of human motion (von Marcard et al., 2017), or full-body biomechanical
models (Yi et al., 2022) to constrain the estimated pose.

From a methodological viewpoint, RING uses a decentralized network of message-passing RNNs with shared
parameters that are trained via supervised learning. The concept of decentralized networks, communication,
and collaboration is at the heart of multi-agent systems, and the means of communication can either be
prescribed (Panait & Luke, 2005; Wang et al., 2019) or, more recently, learned (Sukhbaatar et al., 2016;
Foerster et al., 2016; Wang et al., 2018; Pathak et al., 2019; Huang et al., 2020). In deep Reinforcement
Learning (RL), feedforward networks have been used to parameterize structured policies that pass messages
along the edges of a graph in Sukhbaatar et al. (2016); Foerster et al. (2016); Wang et al. (2018); Huang
et al. (2020), and distinct advantages of message-passing have been shown. In particular, in Huang et al.
(2020) it was investigated whether centralised control can emerge from decentralized policies, and they show
that it is possible to learn a global policy that achieves locomotion across various agent morphologies. It is
interesting to note that policies must collaborate in order to achieve a global task, e.g., locomotion, and are
motivated by a global reward. In the present work, the decentralized RNNs must collaborate by exchanging
information in order to solve the task of motion tracking, and are motivated by a decentralized loss function.
The advantages of communication and global coordination emerging in a decentralized structure were also
investigated in Sukhbaatar et al. (2016); Foerster et al. (2016). In particular, the work of Sukhbaatar et al.
(2016) uses supervised learning instead of RL for learning communication protocols.
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3 Preliminaries

3.1 Notation

We use a typical notation with scalars denoted by x, vectors by x, matrices (or higher dimensional tensors)
by X, and quaternions (or higher dimensional arrays of quaternions) by q. Additionally, note that the symbol
1 defines either the unity element of a given space, or the indicator function, such that, e.g., 10(i) is one for
i = 0 and zero else. The symbol ⊗ is used to denote the direct product of vector spaces, and additionally
denotes quaternion multiplication, see Definition B.2. Further details can be found in Appendix A.1.

3.2 An Inertial Motion Tracking Problem

We define an IMTP as the task of estimating the trajectory of the complete rotational state of an Articulated
Rigid-Body System (ARBS) from inertial data. Conceptually, an ARBS is a collection of multiple rigid (or
assumed to be rigid) bodies that are interconnected via joints that allow for relative motion between these
bodies. Let there be a singleton, inertial reference coordinate system named base (sometimes world, or Earth),
then an orientation of a body relative to the base is referred to as an absolute orientation. An orientation
of a body relative to the coordinate system of another body is referred to as a relative orientation. Then,
assuming that no additional information about the types of joints is provided, to fully describe the rotational
state of an ARBS that consists of N bodies at a single moment in time, N orientations must be specified. In
this work, we will utilize N − 1 relative orientations and one absolute orientation.

An IMTP is solved by estimating the rotational state from at most N IMUs that are connected to the bodies
of the ARBS (at most one IMU per body), and that provide 3D measurements of angular rates, specific
forces, and the magnetic field density in their local sensor coordinates. A magnetometer-free method solves
an IMTP without the use of the magnetometer, and such IMUs are referred to as 6D IMUs. In this case,
the rotational state of the ARBS can only be estimated up to an absolute heading error, that is, up to an
arbitrary rotation around the gravity (or vertical) direction, and the one absolute orientation is referred to as
the absolute attitude. This is because both accelerometer and gyroscope measurements are invariant under a
rotation around the vertical direction. Finally, note that if at least one body of the ARBS does not have an
IMU attached, then the IMTP is said to be sparse.

3.3 Graph Connectivity

The topology of an ARBS is represented by a Connectivity Graph (CG) (Featherstone, 2008; 2010), which is
an undirected graph where the nodes represent the bodies that constitute the ARBS and the edges represent
its joints.

Before the CG can be encoded, the bodies must be numbered. We adopt the broadly adopted standard
numbering scheme and notation from Featherstone (2008; 2010) which for an ARBS with N bodies proceeds
as follows:

1. The base is assigned the number 0 and it serves as the root node.

2. The remaining bodies are consecutively numbered from 1 to N , so that each body has a higher
number than its parent.

The CG may then be encoded via a parent array λ ∈ NN where λ[i] is the body number of the parent of
body i. Additionally, we define the function µ(i) to return the set of the body numbers of the children of
body i, that is

µλ(i) = {j | λ[j] = i ∀j = 1 . . . N} . (1)
Definition 3.1. The body i of an ARBS with parent array λ is said to be an outer body if it has no children
bodies, i.e., µλ(i) = {}, or if its parent is the base, i.e., λ[i] = 0; otherwise it is said to be an inner body.

As an example, consider an ARBS that is a three-segment KC (see Figure 2). There, the three bodies are
numbered increasingly from top-to-bottom, and then, for this numbering, the parent is given by λ = (0, 1, 2)⊺.
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Note that if the inner body (middle segment) is assumed to connect to the base, then the parent array is
different and given by λ = (0, 1, 1)⊺.

3.4 Minimal and Maximal Coordinates

We refer to the generalized coordinates position vector as the minimal coordinates, denoted by q. It fully
captures the kinematic state of the ARBS using a minimal amount of coordinates. The size of q depends
on the DoFs of the joints in the ARBS. In this work, we will consider ARBSs that can move freely in space
(without any constraints). Therefore, in the corresponding CG, the edges that connect to the base are 6-DoF
free joints and all the remaining edges represent single DoF.
Definition 3.2. For an ARBS with N bodies with a CG given by λ where the joints that connect to the
base are 6-DoF and 1-DoF otherwise, the size of q is given by Nq =

∑N
i 710(λ[i]) + (1− 10(λ[i])). Similarly,

the size of the velocity of minimal coordinates q̇ is given by Nq̇ =
∑N

i 610(λ[i]) + (1− 10(λ[i])).

For an ARBS with N bodies, we refer to the set of all euclidean positions and rotational states from the base
to all bodies in the system as the maximal coordinates, denoted by t ∈

(
H⊗ R3)N . The size of t depends

only on the number of bodies in the system.

3.5 Representing Orientations

We represent 3D orientations with quaternions q due to various advantages over equivalent representations
using orthogonal matrices or Euler angles (Kuipers, 2002). In particular, we use 0

1q ∈ H to denote the
absolute orientation from the base to the body one’s coordinate system. Similarly, we use 1

2q to denote the
relative orientation from body one to body two. In Appendix B, we define various utilized quaternion-related
operations.

3.6 Loss Function For Orientations

In order to train and evaluate ML methods that predict orientations (represented by quaternions), a suitable
metric function must be identified. We can compare the difference between a ground truth orientation q and
the corresponding predicted orientation q̂ by computing the angle of the smallest rotation that makes ground
truth and prediction identical. It is given by angle(q ⊗ q̂∗) where ⊗ denotes quaternion multiplication, ∗

denotes the complex conjugate, and angle extracts the rotation angle of a quaternion (see Appendix B.5).
Then, we use the following mean-squared-error function loss : q ∈ H, q̂ ∈ H → R≥0 to calculate a scalar
error between two quaternions, given by

loss(q, q̂) = angle(q ⊗ q̂∗)2. (2)

The loss function for a single orientation in eq. (2) is then used to compute the mean-squared-error for the
entire rotational state of the KC in eq. (10).

4 Method

In this section, we define the problem under consideration and the proposed method which consists of three
components:

• A virtually infinite, simulated training data set (see Section 4.2).

• A novel, online-capable neural network architecture, named RINGCell, purpose-built for state
estimation in ARBS (see Section 4.3). In contrast to typical RNNs that map a fixed number of
input features to a fixed number of output features using a centralized logic, RINGCell leverages the
graph-structure of ARBS and employs a decentralized, message-passing logic with a shared set of
parameters. This design maps a fixed number of input features per body to a fixed number of output
features per body, and it allows RINGCell to adapt to the size and topology of the ARBS without
the need for retraining.
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Figure 2: System object example (see Defini-
tion 4.2) for a three-segment KC with N = 3
bodies and parent array λ3 = (0, 1, 2)⊺.

• A powerful IMT solution, named RING, that can solve a broad range of IMTPs in the real world
(see Section 4.4). RING is obtained by training RINGCell on the simulated training data.

Finally, Section 4.5 provides a software implementation of the entire method and, more specifically, RING.
Most notably, we provide a single file that trains the here benchmarked version of RING from scratch without
requiring any files that contain real-world training data.

4.1 Problem Formulation: A Class of Inertial Motion Tracking Problems

In this work, we consider the following class of IMTPs. We consider an N -segment KC where N ∈ {1, 2, 3, 4}
with unknown physical geometry and with segments that are interconnected via hinge joints. The axes
directions of these hinge joints may be known or unknown. For each inner body at most one and for each
outer body exactly one 6D IMU, with unknown sensor-to-body position, is rigidly or nonrigidly attached to
each body. For each body and with the KC at rest, the constant sensor-to-body orientation is assumed to be
known. The initial pose of the ARBS is assumed to be unknown. Then, the task is to estimate, for every
timestep, the rotational state of the KC (consisting of N orientations) from the available IMU measurements
and the available joint axes directions. Note that the task requires providing accurate estimates at each
timestep, thus necessitating an online-capable solution focused on online, real-time processing (filtering) as
opposed to retrospective data processing (smoothing). To summarize, two IMTPs of this class of IMTPs can
differ in: 1) the number of bodies N in the KC, 2) the number of attached IMUs, 3) the number of known
joint axes directions, and 4) whether IMUs are attached rigidly or nonrigidly. A broad range of IMTPs from
this class of IMTPs are illustrated in Figure 1 within the grey ellipsoid.
Definition 4.1. The parent arrays λN of the N -segment KC where N ∈ {1, 2, 3, 4} are given by, without
loss of generality, λ1 = (0)⊺, λ2 = (0, 1)⊺, λ3 = (0, 1, 2)⊺, λ4 = (0, 1, 2, 3)⊺, respectively.

4.2 Training Data: The RCMG Algorithm

The RING network is trained on data obtained from simulated random motion of one-, two-, three-, and
four-segment KCs. The procedure that generates this training data (from only PseudoRNG) is called the
Random Chain Motion Generator (RCMG) (Bachhuber et al., 2022). The RCMG procedure (see Algorithm 1)
has three main steps that execute consecutively:

1. Randomized KC (see Section 4.2.1). A randomized KC is drawn to manipulate the downstream
simulation and achieve various forms of domain randomization that enable to bridge the sim-to-real
gap from simulation (training) to real-world (testing).

2. Random Motion Generation (see Section 4.2.2). The KC is simulated to randomly move in space
and the maximal coordinates of all bodies relative to the base are computed for every timestep.

3. Get X, Y Data (see Section 4.2.3). From the maximal coordinates of all bodies, the IMU, joint axes,
and pose data is computed, and returned as training data.

Internally, the RCMG procedure uses a system object sys (see Definition 4.2) which is the collection of
various attributes such as, e.g., a joint axes array J ∈ RN×3.
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Figure 3: Each sequence of training data is simulated using the RCMG. In the first step of the RCMG
a randomized KC is created which involves randomizing the node in the KC to which the base attaches.
Afterwards, the nodes in the graph are numbered according to Section 3.3. For example here, for λ4, the new
numbering array is n = (2, 1, 3, 4)⊺, and the new parent array λ = (0, 1, 1, 3)⊺.

Definition 4.2. We define a system object sys with N bodies as the collection of the following attributes:

• a numbering array of integers n ∈ NN which stores a permutation of the numbers going from 1 . . . N ,

• a parent array of integers λ ∈ NN ,

• a joint axes array J ∈ RN×3 that contains the hinge joint axis direction,

• a relative-to-parent position array R ∈ R2N×3 that contains the position vector of the body’s
coordinate system relative to its parent (expressed in the parent’s coordinate system). In Section 4.2.1,
it is outlined that for each of the N bodies there is a second IMU body. In the R array, the first
N values are used to specify the position vector between two non-IMU bodies (segment-to-segment
positions, physical geometry of the KC), while the last N values are used to specify the position vector
from non-IMU body to the corresponding IMU body (segment-to-body positions, IMU attachment).
This is done to independently randomize both the physical geometry and the IMU attachment,
forcing the network to learn to generalize to scenarios such as an arm robot with unknown segment
lengths, as well as to calibrate for an unknown IMU attachment,

• an array of stiffness parameters for N free joints K ∈ RN×6,

• an array of damping parameters for N free joints Γ ∈ RN×6,

• a float representing the sampling time Ts ∈ R, here always 0.01 s.

An exemplary system object is shown in Figure 2.

4.2.1 Step 1) Randomized Kinematic Chain

In order to enrich the simulated training data, several forms of domain randomization are achieved by drawing
a KC with randomized system attributes.

The first domain randomization is the randomization of all downstream forward kinematics applications, and
additionally, randomization of the absolute random translation and orientation in the generation of random
motion. This has been shown to improve the training data such that the trained network more effectively
closes the sim-to-real gap (Bachhuber et al., 2023) This is achieved by re-attaching the bases randomly and
afterwards, the nodes in the graph are re-numbered according to Section 3.3. An example of this is shown
in Figure 3. Secondly, the N randomized hinge joint axes J are drawn. Thirdly, the position array R is
randomized by drawing values from uniform ranges.

Finally, the stiffness K and damping Γ arrays are randomized. These values are used to model nonrigidly
attached IMUs by connecting additional nodes that are connected via passive spring-damper free joints. For
each node i in the CG, we add an additional IMU node with body number i + N that is a child of node i
and that is connected to node i via a passive spring-damper free joint. The stiffness K[i] and damping Γ[i]
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Figure 4: For each node i in the KCs, there exists a second IMU node (that is not counted in the body
count N of the system; here in green) with body number i + N . The IMU node is connected via a passive
spring-damper free joint to the original node in order to simulate nonrigidly-attached IMUs. There is a 25%
chance that the damping and stiffness parameters of the passive free joint are chosen such that the IMU is
effectively rigidly attached and the passive free joint is frozen.

parameters are used during the forward simulation of the KC as the parameters of the 3D spring-damper
dynamics between node i and (IMU) node i + N . For each node i, the stiffness K[i] and damping Γ[i]
parameters are randomized in a way such that, either the IMU is effectively rigidly attached, or such that the
IMU moves relative to the segment node i (which then models nonrigid attachment).

4.2.2 Step 2) Random Motion Generation

As a second step, the RCMG procedure generates random motion of the previously obtained randomized KC.
Random motion is obtained by drawing a random reference trajectory for all joints in the KC. The generation
of such randomized reference trajectories is influenced and constrained by various parameters, e.g., upper
limits on angular velocities or lower limits on the amount of motion (to avoid jittering). Additional details
on the reference trajectory generation can be found in Appendix C.1. Afterwards, a dynamical forward
simulation is performed where joint forces are computed using PD control such that the random reference is
tracked. Note that the additionally added nodes to model nonrigid IMU attachment are passive free joints
and as such they are not actuated. Finally, the trajectories of maximal coordinates of all N bodies and N

IMU bodies, given by T ∈
(
H⊗ R3)2N×T (from base to body), are computed.

4.2.3 Step 3) Get X, Y Data

In the last step, the training tuples of X, Y are computed from the trajectories of maximal coordinates and
afterwards returned. They are:

• X ∈ RT ×N×9, where X[:, i, :6] is the simulated 6D IMU data for body i as measured in its IMU body
i + N (but for each inner body, there is a 2

3 chance that the IMU data gets dropped out and replaced
by zeros), and where X[:, i, 6:] is the joint axis direction J[i] of the hinge joint between body i and
its parent λ[i] and zeros if the parent is the base (but for each body, there is a 1

2 chance that the
joint axis direction data gets dropped out and replaced by zeros), and

• Y ∈ HT ×N where Y[:, i] is the timeseries of: 1) absolute attitudes i
0q(t) if the parent λ[i] is the base;

2) relative orientations i
pq(t) from body i to its parent p = λ[i], and

where T is the number of timesteps (here, 60 s at 100 Hz, thus T = 6000), and N is the number of bodies
in the KC. IMU and joint axes data is dropped out in order to force RING to learn to solve IMTPs with
sparse IMU placement (an inner body may not have an IMU attached to it), and learn to solve IMTPs with
require sensor-to-segment calibration. Finally, multiple sequences are stacked to build a training batch. These
input and output arrays (X and Y) directly align with the provided software implementation of RING, see
Appendix 4.5.
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Algorithm 1 RCMG (Generate One Training Data Pair)
1: Input: λN

2: Output: X ∈ RT ×N×9, Y ∈ HT ×N

3: sys← randSys (λN ) {see Algorithm 2}
4: T← randMotion (sys) {see Algorithm 3}
5: X, Y← getXY(sys, λN , T) {see Algorithm 4}

RINGCellState

RINGCell

RINGCellParams

RING

RINGParams

QuaternionMLP

MessageMLP

MessageMLP

QuaternionMLP

StackedGRUCellConcatenate

StackedGRUCell

Figure 5: The architecture of the plug-and-play IMT solution RING. It consists of the RNN cell RINGCell
and a final MLP head that returns one quaternion per node in the graph. RING is trained to estimate
child-to-parent orientations from the available local IMU and joint axis data and nearest neighbour messages.
To this end, RINGCell applies a shared set of parameters on a decentralized, per-node level and passes
messages along the edges of the graph to allow for information exchange. Note that while the parameters are
shared, the hidden states are not shared across nodes. This architecture allows RING to apply a single set of
parameters across a broad range of IMTPs, which may vary in aspects such as the number of segments, and
it ultimately enables RING’s remarkable pluripotency.
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4.3 The Architecture of RING

RING is based on a decentralized network of message-passing RNNs which allows for information exchange
along the edges of a graph (as given by the CG). RING can be applied to an arbitrary CG (see Section 3.3)
and it maps per-node-input to per-node-output. Most importantly, the parameters of RING are shared across
the nodes of the graph such that the number of parameters of RING does not depend on the given CG. The
hidden state, however, is not shared across the nodes. This allows for the training of a single RING network
which then solves a variety of IMTPs (see Section 4.1).

The introduction of RING stems from the requirement of acquiring a single pretrained network that can
solve different IMTPs with a varying number of inputs and outputs, e.g., estimate two orientations for a
two-segment KC, and three orientations for a three-segment KC. This is possible because on a node (or
segment) level, we can guarantee static input (at most one IMU, at most a known joint axis direction) and
output shapes (one orientation relative to parent). But the per-node-output cannot be estimated from only
the per-node-input as the orientation relative to the parent depends on the orientation state of the parent, and
orientation w.r.t. the base cannot be estimated from 6D IMU data, additionally, the segment may not have
an IMU attached. Thus, we have to allow information exchange between nodes and propose a scheme which
again gives rise to local static input and output shapes of messages. Finally, we claim that the estimation of
the entire pose in a hierarchical approach is inherently natural and provides an advantageous structural prior
to subsequent parameter learning which we explore in Section 5.4.

RING consists of a novel RNN cell, named RINGCell, and a final Multi-Layer Perceptron (MLP) head such
that the network’s per-node-output is a single unit quaternion (per timestep). Note that the network head is
independent of the RINGCell and may easily be replaced to suit different needs.

Let λ be a CG with N ∈ N nodes, let F ∈ N be the number of input features per node, let H ∈ N be the
half-hidden state dimensionality, and let M ∈ N be the dimensionality of the latent messages passed inside
the cell based on the edges in the CG. Then, let ξt-1 ∈ RN×2H be the hidden state of the RINGCell from
the previous timestep t− 1, and let Xt ∈ RN×F be the F inputs for all N nodes at time t. Then, the next
hidden state ξt is obtained by

ξt = ringCell (ξt-1, Xt, λ) ∀t (3)
with ξ0 = 0.

Internally, a RINGCell has the parameters of

• a Message-MLP-network fθ : RH → RM (three layers, single hidden layer, hidden layer size H, ReLU
activations, no final activation), and

• a Stacked-GRUCell-network gθ : R2H × R2M+F → R2H which consists of the sequence of Gated-
Recurrent-Unit(GRU)Cell, LayerNorm, GRUCell (Cho et al., 2014). Note that θ is symbolic for the
whole set of parameters of the Stacked-GRUCell-network and that it is different to the parameters of
fθ.

Note that the two GRUCells each have a hidden state dimensionality of H, thus the hidden state of the
Stacked-GRUCell-network is of dimensionality of 2H.

Then, a RINGCell has three consecutive steps, ∀i = 1 . . . N :

1. Messages Mt ∈ RN×M are computed.

Mt[i] = fθ (ξt-1[i, H:]) (4)

2. Messages are passed and latent input X̃ ∈ RN×(2M+F ) computed.

X̃[i] = concat


Mt

[
λ[i]

]
, 0 +

∑

c∈µλ(i)

Mt[c], Xt[i]


 (5)

where Mt

[
λ[i]

]
is 0 if λ[i] = 0.
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3. Hidden state is updated.
ξt[i] = gθ

(
ξt-1[i], X̃[i]

)
(6)

The architecture of RING is finished by piping the hidden state ξt through a final network head, the
Quaternion-MLP that combines

• a Layernorm, and a MLP-network hθ : RH → R4 (three layers, single hidden layer, hidden layer size
H, ReLU activations, no final activation).

The Quaternion-MLP has two consecutive steps, ∀i = 1 . . . N :

1. Unnormalized output Ỹ ∈ RN×4 is computed.

Ỹ[i] = hθ

(
layernorm (ξt[i, H:])

)
(7)

2. Normalize to allow interpretation as unit quaternions. One unit quaternion per node. Final RING
output Ŷt ∈ HN .

Ŷt[i] = Ỹ[i]√∑4
j=1 Ỹ[i, j]2

(8)

Note that the normalizing operation, due to its square-root operation, requires special care to allow for
successful backpropagation. Also note that the employed loss function, see Section 3.6, is based on a arctan
expression, which does not require any special care, in contrast to seemingly equivalent expressions to extract
the angle from a quaternion that are based on arccos.

Finally, by combining the equations (3), (7), (8) and unrolling the RNN in time, we can view the entire
RING network as a function that maps the timeseries of available input data X ∈ RT ×N×F and CG λ ∈ NN

to the timeseries of predicted output data Ŷ ∈ HT ×N , i.e.

Ŷ = ringθ (X, λ) (9)

where the parameters of RING are given by the set {fθ, gθ, hθ}. The hyperparameters of RING are H ∈ N
and M ∈ N. Note that the set of parameters of RING is influenced by the hyperparameters of RING and the
number of input features per node F , but not by the GC λ or the number of bodies. For example, a single
RING network can be used for predicting the orientations of both two-segment or three-segment KCs even
though the number of bodies and, consequently, the dimensionality of input and output arrays is different,
e.g., X ∈ RT ×2×F compared to X ∈ RT ×3×F .

4.4 RING: A Single IMT Solution to a variety of IMTPs

In this section, we use the simulated training data from Section 4.2 to train a network based on the RINGCell
architecture (see Section 4.3). The trained network is then called RING and, with a single set of parameters,
RING shows its pluripotency in a range of experimental scenarios, from simple single-joint tracking to complex
four-segment KCs, without reliance on magnetometers as will be shown in Section 5.

For each of the four KCs λN (see Definition 4.1), we use the RCMG (see Algorithm 1) to simulate 512
input-output pairs and stack them to create a single batch of training data. This batch of training data is
used to update the parameters of the RING network (see Section 4.3), with H = 400 and M = 200 (total
parameter count: 2 337 404) by minimizing the mean-squared-(orientation-estimation)-error, i.e.,

min
θ

1
10T

∑

N∈{1,2,3,4}
E

X,Y∼RCMG(λN )

T∑

t=1

N∑

i=1
loss (Y, ring(X, λN )) [t, i] (10)

where RCMG is given by Algorithm 1, loss is given by eq. (2), ring is given by eq. (9), and where the
expectation E is estimated using 512 draws.
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1-DoF

Segment

rigidly/nonrigidly 
attached IMUs

Figure 6: Experimental five-segment KC with ten IMUs (orange boxes) and 20 OMC markers (grey spheres).
It uses a single spherical joint followed by three hinge joints, each oriented along the x, y, and z axes,
respectively. Each segment of the KC was equipped with two IMUs: one firmly attached to the segment and
another affixed nonrigidly using foam padding. The experimental KC is moved in space, and the inertial and
optical data is recorded to validate RING and compare it to SOTA methods across a broad range of IMTPs.

We use the LAMB optimizer (You et al., 2020) combined with global (threshold = 0.1) and adaptive (threshold
= 0.2) gradient clipping, a cosine decaying learning rate (initial learning rate = 1 × 10−3, and Truncated
Backpropagation Through Time (TBTT). Borrowing the notation from Williams & Peng (1990), we utilize
TBTT(10 s, 10 s), i.e., the gradients are stopped and applied after 10 s instead of the total length of 60 s.
This results in every batch generation (or episode) corresponding to six parameter updates. We train for
5000 episodes using a single node with eight A40 GPUs (each 48 gigabytes of VRAM). Due to the large
amounts of training data, overfitting is seemingly impossible and any form of early stopping did not prove to
be required. This has been also confirmed with a separate validation dataset. Training has been stopped
after 5000 episodes as the loss has no longer improved.

For practical applications, the inference time and computational requirements of RING are more important
than its training requirements. To this end, a theoretical and empirical analysis of the time complexity of
RING is conducted in Appendix D, and the findings are summarized here. The theoretical time complexity to
advance the prediction of RING by one timestep is O (N ×H × (H + M + F )). This translates in practice
to an efficient NN that enables real-world online application even on low-end hardware. For example, on
a single-core Intel Xeon at 2 GHz, RING can comfortably enable motion tracking of a four-segment KC at
more than 500 Hz, which is well above typical IMU sampling rates that range from 90 to 286 Hz (Laidig et al.,
2021).

4.5 Openly-available Code and Data

The code and experimental validation data is hosted at https://github.com/simon-bachhuber/ring_
supplementary_material and the repository contains implementations of the RCMG, RINGCell, and RING
as decoupled components. Additionally, it includes the code of SOTA methods and validation data to create
the experimental validation results (AMAEs and RMAEs) of RING and the SOTA methods that are discussed
in Section 5. Finally, we also provide files to retrain RING from scratch, without requiring any real-world
training data files. The software, most notably, uses the JAX and Haiku frameworks (Bradbury et al., 2018;
Hennigan et al., 2020). The ease-of-use of RING is demonstrated through a code example in the Appendix E.

5 Experimental Validation of RING

In this section, we evaluate the accuracy of RING with one common set of pretrained parameters (see
Section 4.4) across a broad range of experimental IMTPs (see Section 4.1). In general, RING shows
remarkable pluripotency in zero-shot generalization to real-world experiments across diverse IMTPs. This
underscores its broad applicability.

In Section 5.1, we describe the experimental setup used to evaluate RING on real-world data. We show
that RING successfully solves multiple previously solved challenging IMTPs and competes with the current
SOTA methods (Section 5.2). Impressively, RING further achieves accurate tracking in even more challenging
IMTPs, including two IMTPs that have not been solved before (Section 5.3).
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5.1 Experimental Setup and Evaluation Metric

Experimental evaluation is conducted on a five-segment KC which is shown in Figure 6. The KC is constructed
by a concatenation of a single spherical joint followed by three hinge joints, each oriented along the x, y, and
z axes, respectively. Each segment of the KC was equipped with two IMUs (MTw Awinda, Xsens, Enschede,
the Netherlands): one firmly attached to the segment and another affixed nonrigidly using foam padding.
This foam-attachment of IMU was conducted to investigate the reduction of motion artifacts. The left panel
in Figure 6 shows a close-up of one segment of the KC with one exemplary nonrigidly attached IMU. Each
segment is equipped with at least three noncollinearly placed reflective markers that are used to obtain
ground truth orientations from a twelve camera Optical Motion Capture (OMC) system (OptiTrack Prime
x22, NaturalPoint Inc., Corvalis, USA).

Two distinct trials were conducted, involving random movements of the five-segment KC, by introducing
manual alterations of the KC pose by two experienced scientists. The first trial, spanning a duration of 66 s,
featured a diverse range of motions, extending from very slow to notably rapid movements. Moreover, the
second trial, with a length of 68 s, not only encompassed a variety of motions but also incorporated random
intervals of complete stillness, wherein the KC remained motionless.

All trials were preprocessed in the following way: NaN values were removed, an offline time-synchronization
was employed via cross-correlation between measured (IMUs) and approximated angular velocities (OMC),
and all collected data was resampled to a uniform sampling rate of 100 Hz. Additionally, we correct for
any small misalignment between the rigidly attached IMUs’ local coordinate systems and the corresponding
segments’ body coordinate systems as spanned by the OMC markers. Simultaneously, we align the OMC’s
reference coordinate system with the earth reference coordinate system (the base), as observed by the IMUs.
For more comprehensive details regarding these preprocessing steps and the software implementations utilized,
readers are referred to the study Laidig et al. (2021).

The rich experimental data obtained from the five-segment KC enables us to perform evaluations on subsets of
data and the KC, which represent a variety of different IMTPs. For example, for validation of a one-segment
KC, we use the recorded data of all five segments of the five-segment KC independently for evaluation,
which effectively increases the amount of validation data by a factor of five. Similarly, for validation of a
two-segment KC with a hinge joint, we use three different sub-KCs with a joint axis direction along the x,
y, and z axes (the two-segment sub-KC of segment one and segment two is excluded due to its spherical
joint). Similarly, for a three-segment KC with double hinge joints, we use two different sub-KCs, and for a
four-segment KC with triple hinge joint we use the sub-KC of segment two to five.

Assessing KC pose estimation performance of RING in comparison with existing SOTA and thus solving
the IMTP under consideration, requires the usage of a suitable evaluation metric. As already discussed in
Section 3.6, the expression angle(q ⊗ q̂∗) can be used to compare the difference between a ground truth
orientation q and the corresponding predicted orientation q̂. Thus, in order to compare the timeseries of
ground truth Y ∈ HT ×N and predicted pose Ŷ ∈ HT ×N of an N -segment KC with GC λN , we compute
the Attitude-Mean-Absolute-(orientation)-Error (AMAE) and Relative-Mean-Absolute-(orientation)-Error
(RMAE) which are given by

AMAE
(

Y, Ŷ
)

= 1
T

T∑

t=500

∣∣∣angle
(

zeroHead (Y[t, 1])⊗ zeroHead
(

Ŷ[t, 1]
)∗)∣∣∣ (11)

RMAE
(

Y, Ŷ
)

= 1
TN

T∑

t=500

N∑

i=2

∣∣∣angle
(

Y[t, i]⊗ Ŷ[t, i]∗
)∣∣∣ (12)

where |.| denotes the absolute value and zeroHead removes the heading component (see Definition B.7). Note
that initial 5 s (equaling to an index of 500 at 100 Hertz) of each timeseries were deliberately excluded from
the AMAE and RMAE calculations. This decision was made to ensure that the recorded errors accurately
reflected the method’s performance after convergence.

From Section 3.2, recall that magnetometer-free IMT estimates one absolute attitude, and N − 1 relative
orientations. This difference is captured by the two metrices AMAE and RMAE. Mathematically, AMAE
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reports zero angle error if the ground truth orientation and estimated orientation are equal up to an arbitrary
heading difference. Whereas, RMAE reports zero angle error if and only if both orientations are exactly
identical. The implications are that a low AMAE indicates that the inclination of the system is correctly
estimated but the entire system might still be rotated with an arbitrary yaw angle. A low RMAE means that
the entire internal pose of the system is accurately estimated.

5.2 RING Unifies Prior Work

5.2.1 Attitude Estimation

Attitude estimation in real-world environments using inertial sensors is a vital prerequisite for a wide range
of applications, including tracking human movement and enabling autonomy in air and land vehicles. The
attitude estimation problem is defined as estimating the orientation of an object with respect to the horizontal
plane with a single sensor (Weber et al., 2021).

The widely employed and long-standing methods from Madgwick (2010); Mahony et al. (2008); Seel &
Ruppin (2017) have recently been outperformed with SOTA approaches by Weber et al. (2021); Laidig & Seel
(2023). Table 1 shows that RING aligns with SOTA performance in attitude estimation, as indicated by the
experimental AMAEs. More specifically, the AMAE of the attitude for Madgwick (2010) is (2.25± 0.81)◦, for
Laidig & Seel (2023) is (1.61± 1.04)◦, for Weber et al. (2021) is (2.06± 1.03)◦, for Mahony et al. (2008) is
(2.09± 0.87)◦, for Seel & Ruppin (2017) is (2.56± 0.93)◦, and for RING is (2.13± 0.91)◦.

5.2.2 Magnetometer-free Tracking of 1-DoF Joint

IMT of connected segments without relying on magnetometers is desirable for numerous applications where
the magnetic field is typically disturbed, including control of industrial robotic manipulators, interconnected
drones in automated warehouses, and human motion analysis in hospital environments.

Here, we consider the IMTP of tracking the relative motion between two segments from two 6D IMUs,
assuming a single hinge joint with a known axis direction connects both segments.

Overcoming the use of magnetometers is typically achieved by combining SOTA approaches for attitude
estimation and utilizing joint-specific constraints that exploit knowledge of the hinge joint axis direction
(Laidig et al., 2017; Lehmann et al., 2020). Additionally, a magnetometer-reliant method uses 9D VQF (Laidig
& Seel, 2023) for both IMUs independently and does not exploit any kinematic constraint between the two
body parts. The RMAEs are reported in Table 1, and they are: for the VQF-based baseline (19.36± 8.02)◦,
for Lehmann et al. (2020) (4.15± 2.05)◦, for Laidig et al. (2017) (3.32± 2.12)◦, and for RING (3.52± 1.00)◦.
This shows that RING aligns with the SOTA methods, which are already a non-trivial combination of two
separate methods which, in contrast to applying RING, requires expert knowledge.

5.2.3 Magnetometer-free Tracking of 1-DoF Joint with Unknown Joint Axis Direction

The IMTP of Section 5.2.2 can be made more challenging by assuming that the hinge joint axis direction
is not known. Then, it can first be estimated from the IMU data, and then subsequently a method that
assumes a known joint axis direction can be applied.

A SOTA method for hinge joint axis direction estimation is given by Olsson et al. (2020). RING out-of-the-box
supports an unknown hinge joint axis direction by its versatility to drop out the respective node input and
replacing it with zeros.

The experimental RMAEs are given in Table 1; combining Olsson et al. (2020) with Lehmann et al. (2020)
results in (4.06±2.23)◦, and with Laidig et al. (2017) results in (3.18±2.05)◦, and RING achieves (3.92±1.40)◦.
This shows that RING aligns with SOTA performance, which comprises three distinct methods.

5.2.4 Three-Segment Sparse IMT

Only few recent works have achieved the combination of sparse and magnetometer-free IMT. One such
challenging IMTP is, the tracking of all relative segment orientations of a three-segment KC, with double
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hinge joints and known hinge joint axes directions, by using only two IMUs placed on the outer segments.
The SOTA method for this IMTP is given by Bachhuber et al. (2023). The absolute attitude can be easily
tracked using any of the methods from Section 5.2.1.

As shown in Table 1, the experimental RMAE using Bachhuber et al. (2023) is (5.60 ± 2.35)◦, and using
RING the RMAE is reduced to (4.14± 0.53)◦ and, consequently, RING outperforms the SOTA in this IMTP.

5.3 RING Goes Beyond the SOTA

5.3.1 Motion Artifact Reduction

The efficacy of all SOTA IMT methods heavily rely on a rigid sensor-to-body attachment. In many practical
scenarios, such as human motion analysis, this assumption is rapidly violated, resulting in strongly degraded
estimation accuracies, attributed to a model-reality mismatch.

Here, we consider the IMTP of Section 5.2.2, however here, the IMUs are not rigidly attached to the two
segments, while the estimation target remains the relative orientation between the two segments (and not
between the coordinate systems of the two IMUs), and the absolute attitude of one of the segments.

Currently, there exist no method that does not make the assumption of rigid IMU attachment. Still, the
methods from Section 5.2.1 can be applied to estimate the absolute attitude, and we use the most accurate
estimator VQF (Laidig & Seel, 2023) for comparison purposes. The methods from Section 5.2.2 are applied to
estimate the relative orientation. To compensate for the violation of the rigid-IMU-attachment assumption,
we additionally apply an intuitive low-pass filter (LPF) step to the estimated absolute attitude and relative
orientation for each baseline method to suppress unwanted high frequency artifacts. The cutoff frequency
was grid searched and we report only the best result for each baseline. Alternatively, the use of the LPF on
the estimated orientations prior to computing the relative orientation did not yield better performance.

In Table 1, column 5.3.1A reports the experimental AMAE in the attitude estimate, and demonstrates
RING’s superior performance of (7.59 ± 2.85)◦ over the combination of VQF+LPF with an AMAE of
(9.19 ± 2.31)◦. Similarly, column 5.3.1B reports experimental RMAEs, they are: Lehmann et al. (2020)
achieves (8.00± 2.78)◦, Laidig et al. (2017) achieves (7.00± 1.57)◦, and RING achieves (5.56± 2.33)◦. This
shows that RING outperforms the SOTA methods. Note that the reduced AMAE shows that RING has
learned to fuse the information of the second segment’s IMU into the attitude estimation of the first segment.

5.3.2 Three-Segment Sparse IMT with Unknown Joint Axes Directions

The IMTP considered in Section 5.2.4 can be made even more challenging by not assuming known joint axes
directions.

To the best of the authors’ knowledge, there currently exists no method that is applicable in such a challenging
IMTP. RING can solve this IMTP with only a modest increase in error (Table 1), given the increased
complexity of the task. Note that the direction of the joint axis cannot be estimated using Olsson et al.
(2020) such that the method from Section 5.2.4 may be applied, as Olsson et al. (2020) does not allow for a
sparse sensor setup which inherently requires a pluripotent approach such as RING. We report a RMAE
value of (5.37± 0.71)◦ for RING in this challenging IMTP.

5.3.3 Four-Segment Sparse IMT: 3-DoFs between IMUs

Increasing sensor sparsity will naturally make an IMTP problem more complex. A KC configuration with
four segments and only two 6D IMUs results in three DoFs (three consecutive hinge joints) between the
two outer-segment 6D IMUs and it represents the limit of accurate sparse IMT. Despite the complexity, the
estimation target remains to capture all three relative orientations.

To the best of the authors’ knowledge, there currently is no method that is applicable in such a challenging
IMTP. RING can solve this problem formulation sufficiently well. When assuming known joint axes directions
for the three hinge joints, RING achieves a RMAE of (6.78± 1.41)◦. An exemplary trial is shown in Figure 7.
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Table 1: Motion tracking accuracy (in degrees) of RING compared to various SOTA methods across a variety
of IMTPs. While previous methods are problem-specific and Not Applicable (NA) to many IMTPs, RING is
the only method that accurately solves all problems. All columns report the RMAE, see eq. (12), as metric,
except for the columns 5.2.1 and 5.3.1A which report AMAE as metric, see eq. (11).

IMTPs 5.2.1 5.2.2 5.2.3 5.2.4 5.3.1a 5.3.1b 5.3.2 5.3.3

Method 0

00
3 3

3
4

3

(1) 2.06± 1.03 NA NA NA ≥(5) NA NA NA
(2) 2.25± 0.81 ≥(5) ≥(5) NA ≥(5) NA NA NA
(3) 2.09± 0.87 ≥(5) ≥(5) NA ≥(5) NA NA NA
(4) 2.56± 0.93 ≥(5) ≥(5) NA ≥(5) NA NA NA
(5) 1.61± 1.04 → 19.3± 8.02 NA 9.20± 2.31 24.9± 17.6 NA NA
(5)+(6) ↑ 3.32± 2.12 NA NA ↑ 7.00± 1.57 NA NA
(5)+(7) ↑ 4.15± 2.05 NA NA ↑ 8.00± 2.78 NA NA
(5)+(6)+(8) ↑ → 3.18± 2.05 NA ↑ 8.50± 2.60 NA NA
(5)+(7)+(8) ↑ → 4.06± 2.23 NA ↑ 7.90± 2.48 NA NA
(9) NA NA NA 5.60± 2.35 NA NA NA NA
RING 2.13± 0.91 3.52± 1.00 3.92± 1.40 4.14± 0.53 7.59± 2.85 5.56± 2.33 5.37± 0.71 6.78± 1.41

Methods: Weber et al. (2021)(1), Madgwick (2010)(2), Mahony et al. (2008)(3), Seel & Ruppin (2017)(4), Laidig & Seel (2023)(5), Laidig et al. (2017)(6),
Lehmann et al. (2020)(7),Olsson et al. (2020)(8), Bachhuber et al. (2023)(9)
≥ (i) refers to the AMAE or RMAE of being expected to be larger or equal than for method (i)
↑ or → indicate that the AMAE or RMAE is equal to the AMAE or RMAE of the cell above or to the cell to the right

t=0s
Render Optical Motion 
Capture

Real-world Experiment

Render RING's prediction

t=40s t=50s

Figure 7: Exemplary frames that showcase RING’s performance for the IMTP that involves a four-segment
KC with sparse IMU attachments and known joint axes directions (see Section 5.3.3). It is a remarkable first
that RING can accurately estimate the four orientations (one absolute and three relative orientations) from
only two magnetometer-free IMUs. A video of the trial is available here.

When assuming unknown joint axes directions, RING achieves (13.66±3.07)◦. This shows that with unknown
joint axes directions, this IMTP pushes the limits of observability (Bachhuber et al., 2022).

5.4 The Decentralized Approach of RING Provides an Advantageous Structural Prior

In this section, we showcase a second advantage of the decentralized approach of RING over a centralized
approach that is typically employed, e.g., by stacking multiple LSTM- or GRU-Cells. First, recall that RING
is based on a decentralized network of message-passing RNNs which allows for the training of a single set of
parameters despite a varying number of bodies in the KC and, while the latter aspect is the core motivation
behind this architecture it is, interestingly, not the sole motivation behind the decentralized approach. The
second motivation is that the estimation of the entire pose in RING’s decentralized approach provides an
advantageous structural prior compared to an RNN that utilizes a centralized approach. For this purpose, we
compare RING to the RNN-based Observer (RNNO), a deep GRU network with intermediate Layernorm
layers, as it was proposed in Bachhuber et al. (2023). RNNO maps all available input data to the entire
targeted pose data and does not utilize the specific graph structure of the IMTP. RNNO has been proposed
as the solution of a specific IMTP (see Section 5.2.4) and, for this IMTP, both RING and RNNO achieve
similar performance. However, this is not the case if the IMTP becomes vastly more complex. Consider, e.g.,
the IMTP of Section 5.3.3, which is arguably the most challenging IMTP under consideration in this work.
We have trained RNNO on the subset of training data of RING that corresponds to this IMTP. Despite
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Table 2: Motion tracking accuracy of RING solving the IMTP defined in Section 5.2.3 on external datasets.
RING provides consistently low errors demonstrating robustness across different IMU hardware.

Dataset IMU Hardware T[s] Native Rate [Hz] RMAE [◦]
Ours Xsens MTw Awinda 402 40 3.92± 1.40
RepoIMU (1) microIMU (2) 390 90 3.44± 0.06
OpenAXES (3) Bosch BMI160 + Analog Devices ADXL355 227 ≈ 125 2.52± 0.29

Szczęsna et al. (2016) (1), Jędrasiak et al. (2013) (2), Webering et al. (2023) (3)

varying several hyperparameters, the best reported RMAE of RNNO is (18.72± 5.12)◦. This is significantly
higher compared to RING’s RMAE of (6.78± 1.41)◦, even though RING is maintaining its applicability to a
broad range of IMTPs, and is not purpose-trained for a single IMTP. This showcases that the decentralized
approach of RING provides an advantage even if only the solution of a single, specific IMTP is required.

5.5 RING’s Robustness to Different IMUs

IMUs in general, and especially across vendors, differ in properties like noise density and bias offset. RNN-
based inertial sensor fusion has been demonstrated to generalize across different sensor hardware (Weber
et al., 2021). Nonetheless, to ensure broad real-world applicability, we investigate RING’s robustness to
different IMU hardware. First, we analyze how RING’s performance scales as noise and bias properties are
incrementally increased. Then, we evaluate RING on openly-available, real-world datasets that use IMUs
from different vendors.

To simulate reasonable noise density and bias offset ranges, we constructed a worst-case IMU by combining
the worst properties of various IMU manufacturers, as summarized in Table 3. Then, those worst-case noise
and bias values are incrementally (in seven equidistant steps) increased from 0 to 120%, and a corresponding
amount of simulated noise and bias is added to our real-world IMU data (see Section 5.1), which yields seven
modified datasets. RING and all SOTA methods are validated on the modified dataset, and this procedure is
repeated using ten different seeds. The AMAEs and RMAEs of all methods are plotted for all IMTPs as a
function of the seven steps in Figure 9. The figure shows that, whilst the performance of all methods (as
expected) slightly worsens as noise and bias are increased, RING maintains accuracy comparable to SOTA
methods in all IMTPs and, especially in two-segment KC tracking, substantially outperforms them.

The RepoIMU dataset (Szczęsna et al., 2016) contains real-world IMU and ground truth data from passive
motions of a swinging pendulum. It uses non-commercial micro IMUs (Jędrasiak et al., 2013) with a focus on
low cost and small size over accuracy. The OpenAXES Robot Dataset contains data from motions of a robot
arm drawing different shapes at different speeds. IMUs are attached to each segment, and the ground truth
is known from the robot’s encoders. Table 2 reports RING’s performance for both external datasets.

6 Discussion

We have shown that a single RNN, named RING, can accurately solve a broad range of IMTPs even if
two IMTPs do not have same input-output dimensionality. This pluripotent behavior originates from a
decentralized architecture that provides an advantageous structural prior compared to the more typical
centralized approach which, in contrast to RING, has the additional limitation that it can only be utilized
if the solution of a single IMTP is sufficient. In summary, for the set of IMTPs under consideration (see
Section 4.1), we have shown that RING can enable accurate IMT for one-, two-, and three-segment KCs as
long as the IMUs are rigidly attached. Most notably, this includes an IMTP that is sparse, magnetometer-free,
and requires sensor-to-segment calibration. If IMUs are nonrigidly attached, then RING is shown to provide
accurate orientation estimates for a two-segment KC. RING can achieve accurate IMT for a four-segment
KC, provided that the IMUs are rigidly attached and sensor-to-segment calibration is not required. It is a
remarkable first, that RING can track the pose of the four-segment KC (which requires in total four distinct
orientations) using only two IMUs. Note that RING does not require problem specific priors, although their

17



Published in Transactions on Machine Learning Research (10/2024)

introduction, i.e., a known joint axes direction, or an additionally attached IMU is straightforwardly possible
as additional input data to improve the motion tracking accuracy even further. This can be seen in Table 1
where, e.g., for a three-segment KC, providing joint axes directions decreases the mean RMAE from 5.37◦

(Section 5.3.2) to 4.14 (Section 5.2.4).

7 Conclusion

In the presented work, we combined ideas from the domain of multi-agent systems with RNNs to propose
an architecture based on a decentralized network of message-passing, parameter-sharing RNNs. We have
successfully exploited this combination for the analysis of structural sequential data and solved a challenging
state estimation problem, which is IMT of KCs, by letting the decentralized network map local IMU
measurements and nearest-neighbour messages to local orientations. In particular, we introduced RING,
a pluripotent IMT solution that, unlike all previous, problem-specific approaches, enables plug-and-play
non-expert use. RING outperforms a range of problem-specific SOTA solutions and even generalizes to
previously unsolved scenarios, including the challenging combination of magnetometer-free and sparse sensing
with unknown sensor-to-segment parameters. Remarkably, RING demonstrates the ability to zero-shot
generalize to experimental scenarios, despite being trained solely on simulated data. For example, RING can,
for the first time, accurately track a real-world four-segment kinematic chain (which requires estimating four
orientations) using only two magnetometer-free IMUs.

RING’s pluripotency greatly simplifies the application of IMT by eliminating the need for expert knowledge
to identify, select, and fine-tune problem-specific methods. This is expected to not only make IMT more
powerful and less restrictive in established domains but also to facilitate the accessibility of IMT technology
by non-expert users and broadens its applicability to previously untapped domains.
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A Preliminaries

A.1 Notation

• Scalars are lowercase or uppercase, italic, non-bold, e.g., x ∈ R, or, e.g., N ∈ N.

• (Column) vectors are lowercase, italic, bold, e.g., x ∈ R3, and, e.g., x = (1, 2, 3)⊺.

• Matrices (or higher) are uppercase, upright, bold, e.g., X and X ∈ R3×4.

• Individual quaternions are denoted with q ∈ H. One-dimensional arrays of quaternions with q, e.g.,
q ∈ H5. Two dimensional arrays of quaternions with q, e.g., q ∈ H5×5.

• (Programming) functions and structures are written in typewriter typestyle, e.g., sys.

• The equal symbol = is overloaded and used for definitions, assignments, and comparison, and the
context defines the current meaning.

• The symbol 0 defines an arbitrarily large array of zeros that is automatically broadcasted to the
required dimensionality.

• The symbol 1 defines either the unity element of a given space, or the indicator function, such that,
e.g., 10(i) is one for i = 0 and zero else.

• The symbol ⊗ is used to denote the direct product of vector spaces, and additionally denotes
quaternion multiplication, see Definition B.2.

A.2 Array Indexing and Slicing

Vectors and matrices are array-like objects that can be indexed and sliced dynamically. Indexing starts with
1 and slicing is inclusive on both sides. For example, let X ∈ R3×4, then X[1]∈ R4, or X[1:2]∈ R2×4.

Additionally, we define the following auto-completion rules by example, such that X[:2] is equivalent to X[1:2],
and X[2:] is equivalent to X[2:3], and X[:] is equivalent to X[1:3]. Finally, multiple dimensions can be indexed
or sliced simultaneously and are separated by a comma, e.g., X[:, 3:]∈ R3×2.

B Quaternion Algebra

Definition B.1. We use H to denote the space of all unit quaternions, and we denote a unit quaternion
with q = qw + qxi + qyj + qzk.
Definition B.2. Let q1, q2 ∈ H be two unit quaternions, then we use ⊗ to denote quaternion multiplication
of the two unit quaternions, that is

q1 ⊗ q2 = (q1wq2w − q1xq2x − q1yq2y − q1zq2z) + (q1wq2x + q1xq2w + q1yq2z − q1zq2y)i
+ (q1wq2y − q1xq2z + q1yq2w + q1zq2x)j + (q1wq2z + q1xq2y − q1yq2x + q1zq2w)k

Note that the space of unit quaternions H in combination with quaternion multiplication ⊗ forms a closed
group, i.e., (q1 ⊗ q2) ∈ H ∀q1, q2.
Definition B.3. The inverse of a quaternion q−1 is given by the complex conjugate denoted by q∗.
Definition B.4. The quaternion that corresponds to a certain rotation around an axis j = (jx, jy, jz)⊺ ∈ R3

by an angle α ∈ R is given by q = quat(j, α) = cos( α
2 ) + (jx sin( α

2 ))i + (jy sin( α
2 ))j + (jz sin( α

2 ))k.
Definition B.5. Extracting the angle α from a given quaternion q (the inverse operation of B.4) can be

done using angle(q) = 2 arctan
(√

q2
x+q2

y+q2
z

qw

)
.
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Definition B.6. We define the projection project of a quaternion q onto a (primary) axis J as the
decomposition into two quaternions, the primary rotation qp and the residual rotation qr, such that
q = qr ⊗ qp while the angle of the residual rotation is minimized. This can be done with

1. αp ← arctan
(

jxqx+jyqy+jzqz

qw

)

2. qp ← quat(j, αp)

3. qr ← q ⊗ q∗
p

Definition B.7. We define the function zeroHead as the function that maps a quaternion q to the quaternion
qr with zero heading component and returns qr. It can be obtained via

1. qp, qr ← project (q, (0, 0, 1)⊺)

where project is given in Definition B.6.
Definition B.8. The function randQuat that returns a random quaternion, uniform on the sphere, can be
obtained by drawing i.i.d. four numbers from a normal distribution, interpreting them as the components
qw, qx, qy, qz of a quaternion, and then normalizing the quaternion to obtain a unit quaternion.
Definition B.9. The function rotate(q, r) applies a quaternion q to a vector r ∈ R3. If the quaternion is
interpreted as 0

1q (from 0 to 1) and the vector is expressed using the unit-vectors of coordinate system 0,
then the function rotate returns the same vector but using the unit-vectors of coordinate system 1. Let
r = (rx, ry, rz)⊺, then the rotate(q, r) function is given by (q ⊗ (0, rx, ry, rz)⊺ ⊗ q∗) [1:].

C Training Data: The RCMG Algorithm

Algorithm 2 randSys (RCMG First Step)
1: Input: λN

2: Output: sys
3: sys← initSys(λN ) {allocate empty structure}
4: sys← randBase(sys, λN ) {see Definition C.1}
5: for i = 1 to N do
6: sys.J[i] = rotate(randQuat(), êx) {random hinge joint axis direction; unused if sys.λ[i] = 0}
7: for d = 1 to 3 do
8: sys.R[i, d] = randSegmentToSegment(d) {see Definition C.2}
9: sys.R[i + N, d] = randSensorToSegment(d) {see Definition C.2}

10: end for
11: {IMU of node 1 of the standard system is always rigidly attached, as there is no second IMU whose

measurements may be fused to effectively eliminate motion due to the nonrigid attachment.}
12: if sys.n[1] = i or randBernoulli(0.25) then
13: k← getRigidStif() {see Definition C.4}
14: γ ← getRigidDamp() {see Definition C.4}
15: else
16: k← randNonRigidStif() {see Definition C.5}
17: γ ← randNonRigidDamp() {see Definition C.5}
18: end if
19: sys.K[i] = k
20: sys.Γ[i] = k · γ {element-wise multiplication}
21: end for
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Algorithm 3 randMotion (RCMG Second Step)
1: Input: sys, (motionConfig) {motionConfig object is used only by randFreeTraj and randHingTraj

and it influences and constraints the random motion (see Appendix C.1)}
2: Output: T ∈

(
H⊗ R3)2N×T

3: T ← int
(

60
sys.Ts

)
{# timesteps; duration of training sequences is 60 seconds}

4: Q = 0 {timeseries of minimal coordinates Q ∈ RNq×T of system without IMU bodies; see Definition 3.2}
5: a← 0
6: for i = 1 to N do
7: if sys.λ[i] = 0 then
8: b← a + 7
9: Q[a:b] = randFreeTraj (motionConfig, T ) {see Definition C.6}

10: else
11: b← a + 1
12: Q[a:b] = randHingTraj (motionConfig, T ) {see Definition C.6}
13: end if
14: a← b
15: end for
16: Q̃ = 0 {timeseries of minimal coordinates Q̃ ∈ RT ×(Nq+7N) of system with IMU bodies; see Definition 3.2}
17: q̃ ← 0
18: ˙̃q ← 0 { ˙̃q ∈ RNq̇+6N ; see Definition 3.2}
19: for t = 1 to T do
20: τ ← PDControl (sys, Q[:, t], q̃[:Nq]) {see Definition C.7}
21: τ ← concat

(
τ , 0 ∈ R6N

)⊺ {N IMUs’ passive free joints}
22: q̃, ˙̃q ← forDyn

(
sys, q̃, ˙̃q, τ

)
{see Definition C.8}

23: Q̃[t] = q̃
24: end for
25: T← forKin

(
sys, Q̃

)
{see Definition C.8}
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Algorithm 4 getXY (RCMG Third Step)
1: Input: sys, λN , T ∈

(
H⊗ R3)2N×T

2: Output: X ∈ RN×9×T , Y ∈ HN×T

3: X← 0
4: Y← 0
5: for i = 1 to N do
6: p← λN [i]
7: ĩ← sys.n[i]
8: p̃← 0
9: if p ̸= 0 then

10: p̃← sys.n[p]
11: end if
12: Oi ← isOuter(i, sys.λ) {true if body i is an outer body; see Definition 3.1}
13: if Oi or randBernoulli(0.33) {inner IMU data might not be made available} then
14: j ← ĩ + N {body number IMU node}
15: X[i, :6] = simIMU (T[j], sys.Ts) {see Definition C.9}
16: end if
17: if p ̸= 0 and randBernoulli(0.5) {for hinge joints, joint axis might not be made available} then
18: X[i, 7:] = sys.J[̃i]
19: end if
20: 0

pq← 1

21: if p̃ ̸= 0 then
22: 0

pq← T[p̃, :4]
23: end if
24: 0

iq← T[̃i, :4]
25: i

pq ← 0
pq ⊗ 0

iq∗ {note that the expression 0
pq∗ ⊗ 0

iq can not be used instead of 0
pq ⊗ 0

iq∗, as it can
dramatically reduce the network’s ability to learn. The reason is that in the expression 0

pq ⊗ 0
iq∗ the

joint axis direction is expressed in the (more meaningful) local coordinate system and not in the base’s
coordinate system.}

26: if p̃ = 0 then
27: i

pq← zeroHead
(

i
pq

)
{see Definition B.7}

28: end if
29: Y[i] = i

pq
30: end for
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               RCMG
Simulates Random Motion

1

2

3

0

Random 6DoF

Random Hinge 1

Random Hinge 2

Figure 8: RCMG generates random motion by drawing random trajectories of the minimal coordinates
of the system. Exemplary random trajectories of the hinge joint’s minimal coordinates are shown for the
four different motionConfigs (see Appendix C.1). They are drawn using the function randHingeTraj, see
Definition C.6. RCMG also draws the random trajectory of the minimal coordinates of the free joint, but
they are not shown here for simplicity.

C.1 The motionConfig Object

In the second step of the RCMG (see Section 4.2.2), random motion of the KC is simulated and, subsequently,
training data is generated. Random motion of the KC is obtained by using PD control during a dynamical
forward simulation such that the minimal coordinates of the KC track a randomly drawn set of reference
trajectories for the minimal coordinates. The functions randFreeTraj and randHingTraj (see Definition C.6)
are used to draw the minimal coordinates reference trajectories in Algorithm 3. Furthermore, the type of
motion generated by these functions can be manipulated with a motionConfig object which defines various
parameters, e.g., upper limits on angular velocities or lower limits on the amount of motion. For an exhaustive
list of parameters, the reader is referred to the software implementation (see Appendix 4.5).

In this work, we use in total four different motionConfigs to generate training data. For each generated
sequence, we randomly and uniformly draw from these four. The four motionConfigs are used to ensure
that a wide range of different motion patterns are covered in the training data. Exemplary trajectories of the
hinge joints’ minimal coordinates are shown in Figure 8.

C.2 Support Functions used in Algorithms 2/3/4

In the following, the functions used in Algorithms 2/3/4 will be discussed. And while no pseudo-code is
provided for these support functions, it should be noted that the majority of these functions should be
understandable despite a textual description only. Additionally, the reader may always refer to the software
implementation for additional details (see Appendix 4.5).

Definition C.1. The function randBase(sys, λN ) randomly re-attaches the base of the system sys and
afterwards the nodes in the graph are re-numbered according to Section 3.3. This process yields a new parent
array λ. Additionally, the permutation of the new numbers of the nodes expressed in the numbering scheme
that was used to obtain λN is captured in the numbering array n.

Consider the three-segment KC given in Figure 2. The parent array is given by λ3 = (0, 1, 2)⊺ and we assume,
without loss of generality, the numbering scheme that is shown in the figure. Here, the function randBase
has three choices for attaching the base. The first is trivial and given by node 1. The second is given by node
2. In this case the parent array is always given by λ = (0, 1, 1)⊺, and two scenarios for the numbering array
are possible. They are n = (2, 1, 3)⊺ and n = (3, 1, 2)⊺. The third and last option is given by node 3. In this
case the parent array is unchanged but n = (3, 2, 1)⊺.

A second example is given in Figure 3.
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Definition C.2. The functions randSegmentToSegment and randSensorToSegment randomize the body-to-
body- and sensor-to-body positions expressed in the local coordinate, respectively. Internally, they both draw
these vectors randomly from uniform values ranges. These value ranges are chosen such that there exists a
dominant longitudinal direction (x-component), and two equal transversal directions.
Definition C.3. The function randBernoulli(p) returns 1 (or true) with probability p and zero (or false)
else.
Definition C.4. The functions getRigidStif and getRigidDamp return the stiffness and damping parameters
(both are six-dimensional) of the free joint that connects body i to IMU body i + N . This mechanism is used
to simulate nonrigid IMU attachment. However, these functions provide a fixed set of values that leads to
highly stiff and critically damped spring-damper system such that there is effectively no motion between
body i and IMU body i + N .
Definition C.5. The functions randRigidStif and randRigidDamp return the stiffness and damping
parameters of the free joint that connects body i to IMU body i + N . Internally, both functions draw these
six-dimensional vector randomly from log-uniform values ranges.
Definition C.6. The function randFreeTraj(motionConfig, T ) returns a random trajectory of minimal
(for free joint minimal=maximal) coordinates ∈

(
H⊗ R3)T with T timesteps for a free 6-DoF joint. The

function randHingeTraj(motionConfig, T ) returns a random trajectory of minimal coordinates ∈ RT with
T timesteps for a hinge joint. Internally, they both use the motionConfig (see Appendix C.1) to constraint
the random motion to physically relevant motion, i.e., the, e.g., angular velocity is bounded from above.
Exemplary trajectories are shown in Figure 8. For additional details, the reader is referred to the software
implementation, see Appendix 4.5.
Definition C.7. The function PDControl(sys, qr, q) computes the generalized force vector τ ∈ RNq̇ using a
decentralized scheme using N independent PD controllers, and where qr ∈ RNq denotes the reference minimal
coordinates and q ∈ RNq denotes the observed minimal coordinates. Note that the provided system object
sys has 2N bodies but only the first N bodies are actuated. The remaining bodies are passive free joints.
Definition C.8. The function forDyn (sys, q, q̇, τ ) applies forward dynamics in the system sys and integrates
the minimal coordinates position and velocity vector q, q̇ by sys.Ts. The function forKin (sys, Q) applies
forward kinematics in the system sys, i.e., it provides a map from minimal Q to maximal coordinates T. Here,
it is additionally vectorized over the time dimension. A text-book reference for both well-known algorithms
can be found in Featherstone (2008).
Definition C.9. The function simIMU(T, Ts) simulates a 6D IMU from a trajectory of maximal coordinates.
First, the maximal coordinates are butter-worth low-pass-filtered (both the quaternion and position trajectory).
Then, a second-order numerical differentiation for both gyroscope and accelerometer is used. The accelerometer
is low-pass-filtered. Gravity and simulated noise and bias terms are added. The cutoff frequencies have
been optimized such that experimental IMU data is recovered with the highest fidelity from the maximal
coordinate trajectories from OMC. Additional details can be found in Bachhuber et al. (2022).

D RING’s Time Complexity and Computational Requirements at Inference

For practical applications, the inference time and computational requirements of RING are critical to enable
real-world online applications. Therefore, we conduct a theoretical and empirical time complexity analysis of
RING at inference.

The theoretical time complexity of RING depends on the operations involved when advancing the prediction
by one timestep. First, we assume a naive matrix multiplication complexity, i.e, let A ∈ RC×D and B ∈ RD×E

then AB is O(C ×D × E). Now, recall that N is the number of bodies, F the number of features per body
(here F = 9), M is the message dimension, and H is the hidden state dimension, then

• eq. (4) is O(N ×H ×H + N × 1×H2 + N ×M ×H) (fθ),

• eq. (5) is O(N ×M) (summation operation, a tree with N nodes has at most N − 1 edges),
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Table 3: Non-exhaustive list of IMU hardware and their typical (typ.) noise and bias properties as provided
in the manufacturers’ technical specifications. Unfortunately, not all manufacturers provide this information.

Hardware Gyr. N.D. [◦/s/
√

Hz] Gyr. Of. [◦ s−1] Acc. N.D. [µg/
√

Hz] Acc. Of. [mg]
Bosch BMI160 (1) 0.007 ±3 180 ±40
A.D. ADXL355 (2) Acc. only Acc. only 22.5 ±25
Xsens MTi 10 (3) 0.03 ±0.2 60 ±5
Xsens MTi 100 (3) 0.01 ±0.2 60 ±5
Xsens MTw (ours) (4) 0.01 N.P. 200 N.P.
Movella Dot (5) 0.007 N.P. 120 N.P.
K. KXTC9-2050 (6) Acc. only Acc. only 125 N.P.
max (worst-case) 0.03 ±3 200 ±40

Noise Density (N.D.), Offset (Of.), Not Provided (N.P.)
Accelerometer units are micro-gravity per square-root of Hertz and milli-gravity
Sources in supplementary materials: bosch_bmi160.pdf (1), analog_devices_adxl355.pdf (2),
xsens_mti.pdf (3), xsens_mtw.pdf (4), movella_dot.pdf (5), kionix_kxtc9− 2050.pdf (6)

0

5

10

A
M

A
E

[d
eg

]

IMTP defined in Section 5.2.1
(1)
(2)
(3)

(4)
(5)
RING

0

10

20

30

R
M

A
E

[d
eg

]

IMTP defined in Section 5.2.2
(5)
(5)+(6)

(5)+(7)
RING

0

10

20

30

R
M

A
E

[d
eg

]

IMTP defined in Section 5.2.3
(5)
(5)+(6)+(8)

(5)+(7)+(8)
RING

2

4

6

8
R

M
A

E
[d

eg
]

IMTP defined in Section 5.2.4

(9) RING

0 20 40 60 80 100 120
Noise and Bias [%]

2.5

5.0

7.5

10.0

12.5

A
M

A
E

[d
eg

]

IMTP defined in Section 5.3.1A

(5) RING

0 20 40 60 80 100 120
Noise and Bias [%]

0

10

20

30

R
M

A
E

[d
eg

]

IMTP defined in Section 5.3.1B
(5)
(5)+(6)
(5)+(7)

(5)+(6)+(8)
(5)+(7)+(8)
RING

0 20 40 60 80 100 120
Noise and Bias [%]

4

6

8

R
M

A
E

[d
eg

]

IMTP defined in Section 5.3.2
RING

0 20 40 60 80 100 120
Noise and Bias [%]

6

8

10

R
M

A
E

[d
eg

]

IMTP defined in Section 5.3.3
RING

1Figure 9: Comparison of the robustness of RING and SOTA methods as the level of noise and bias is increased.
To simulate reasonable noise density and bias offset ranges, we constructed a worst-case IMU by combining
the worst properties of various IMU manufacturers, as summarized in Table 3. Then, those worst-case noise
and bias values are incrementally (in seven equidistant steps) increased from 0 to 120%, and a corresponding
amount of simulated noise and bias is added to our real-world IMU data (see Section 5.1), which yields seven
modified datasets. RING and all SOTA methods are validated on the modified dataset, and this procedure
is repeated using ten different seeds. The AMAEs and RMAEs of all methods are plotted for all IMTPs
as a function of the seven steps. The 25%/50%/75%-percentiles across all trials and seeds are shown, and
they show that RING maintains accuracy comparable to SOTA methods in all IMTPs and, especially in
two-segment KC tracking, substantially outperforms them. Methods are Weber et al. (2021)(1), Madgwick
(2010)(2), Mahony et al. (2008)(3), Seel & Ruppin (2017)(4), Laidig & Seel (2023)(5), Laidig et al. (2017)(6),
Lehmann et al. (2020)(7),Olsson et al. (2020)(8), Bachhuber et al. (2023)(9).
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Table 4: Performance comparison across different hardware configurations.

Hardware Computation Time [µs] Latency [µs]
λ1 λ2 λ3 λ4 λ1 λ2 λ3 λ4

(1) 131± 8 757± 143 881± 128 916± 228 158± 7 789± 137 912± 84 975± 172
(2) 132± 5 172± 20 181± 17 192± 19 206± 5 241± 25 251± 31 267± 30
(3) 78± 5 127± 8 129± 8 127± 9 152± 14 199± 20 197± 11 201± 11
(4) 376± 90 681± 148 647± 96 879± 361 603± 167 834± 174 947± 211 1106± 377
(5) 214± 55 327± 69 325± 51 338± 60 494± 53 692± 133 684± 426 704± 153

Apple M2 Pro (1), W-1390P (2), W-1390P + RTX A5000 (3), Intel Xeon @ 2.0 Ghz, 1 Core, 2 Threads (Google Colab) (4),
Intel Xeon @ 2.0 Ghz, 1 Core, 2 Threads + Tesla T4 GPU (Google Colab) (5)

• eq. (6) is O(N × H × (2M + F ) + N × H2) (first GRU cell of gθ), O(N × H) (Layernorm),
O(N ×H ×H + N ×H2) (second GRU cell of gθ),

• eq. (7) is O(N ×H) (Layernorm), O(N ×H ×H + N × 1×H2 + N × 4×H) (hθ),

• eq. (8) is O(N) (normalization).

This leads to an overall complexity of O (N ×H × (H + M + F )). Note that the leading N term is imple-
mented in a way such that it corresponds to an efficient batch operation and not a for loop. This is crucial
for performance (especially on GPUs).

We conduct the empirical analysis for various types of hardware and report computation time and latency
required for advancing the prediction by one timestep. Latency includes overheads such as conversion
of the NumPy array to the deep-learning-framework-specific array type and potential to-and-from-device
transfer overheads. Effectively, latency measures the time required from NumPy array input to NumPy array
prediction, i.e.,

Xt

np.ndarray to device→
Xt

jax.Array → ring→︸ ︷︷ ︸
Computation Time

Ŷt

jax.Array to host→

︸ ︷︷ ︸
Latency

Ŷt

np.ndarray.

Consequently, latency needs to be lower than the time delta due to the IMU sampling rate to enable lag-free
real-time application (excluding a delay of one frame). Table 4 reports the timings for various hardware and
the different IMTPs that include either one-, two-, three-, or four-segment KCs.

E Software Example

This example code uses the published software (see Section 4.5) and showcases how RING is applied in
Section 5.3.2, i.e., it solves an IMTP that consists of a three-segment KC with sparse 6D IMU attachment
and with unknown joint axes directions.

1 import ring
2 import numpy as np
3

4 T : int = 30 # sequence length [s]
5 Ts : float = 0.01 # sampling interval [s]
6 B : int = 1 # batch size
7 lam: list[int] = [-1, 0, 1] # parent array; because of Python's conventions body counting starts at 0, as a

consequence the base body is indicated by -1 and not 0↪→
8 N : int = len(lam) # number of bodies
9 T_i: int = int(T/Ts) # number of timesteps

10

11 X = np.zeros((B, T_i, N, 9))
12 # where X is structured as follows:
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13 # X[..., :3] = acc
14 # X[..., 3:6] = gyr
15 # X[..., 6:9] = jointaxis
16

17 # let's assume we have an IMU on each outer segment of the
18 # three-segment kinematic chain
19 X[..., 0, :3] = acc_segment1
20 X[..., 2, :3] = acc_segment3
21 X[..., 0, 3:6] = gyr_segment1
22 X[..., 2, 3:6] = gyr_segment3
23

24 ringnet = ring.RING(lam, Ts)
25 yhat, _ = ringnet.apply(X)
26 # yhat: unit quaternions, shape = (B, T_i, N, 4)

30





Paper E

Neural ODEs for Data-Driven Automatic
Self-Design of Finite-Time Output Feedback

Control for Unknown Nonlinear Dynamics

Authors: Bachhuber, Simon and Weygers, Ive and Seel, Thomas

Published in: IEEE Control System Letters (Volume 7)

Publication date: 07 July 2023

DOI: https://doi.org/10.1109/LCSYS.2023.3293277

https://doi.org/10.1109/LCSYS.2023.3293277


3048 IEEE CONTROL SYSTEMS LETTERS, VOL. 7, 2023

Neural ODEs for Data-Driven Automatic
Self-Design of Finite-Time Output Feedback

Control for Unknown Nonlinear Dynamics
Simon Bachhuber , Ive Weygers , and Thomas Seel

Abstract—Many application fields, e.g., robotic surgery,
autonomous piloting, and wearable robotics greatly bene-
fit from advances in robotics and automation. A common
task is to control an unknown nonlinear system such that
its output tracks a desired reference signal for a finite
duration of time. A learning control method that automat-
ically and efficiently designs output feedback controllers
for this task would greatly boost practicality over time-
consuming and labour-intensive manual system identifica-
tion and controller design methods. In this contribution we
propose Automatic Neural Ordinary Differential Equation
Control (ANODEC), a data-efficient automatic design of
output feedback controllers for finite-time reference track-
ing in systems with unknown nonlinear dynamics. In a
two-step approach, ANODEC first identifies a neural ODE
model of the system dynamics from input-output data of the
system dynamics and then exploits this data-driven model
to learn a neural ODE feedback controller, while requiring
no knowledge of the actual system state or its dimen-
sionality. In-silico validation shows that ANODEC is able
to —automatically— design competitive controllers that
outperform two controller baselines, and achieves an on
average ≈ 30 % / 17 % lower median RMSE. This is demon-
strated in four different nonlinear systems using multiple,
qualitatively different and even out-of-training-distribution
reference signals.

Index Terms—Autonomous systems, data-driven
modeling, learning systems, motion control, neural
networks.

I. INTRODUCTION

ADVANCES in robotics and automation continue to have a
significant impact on a large range of application fields:

Cars that autonomously perform certain maneuvers, assem-
bly lines with robotic manipulators that perform repetitive
tasks, and patients that regain the ability to perform func-
tional motions through combinations of functional electrical
stimulation and wearable robotics.

A common task in all of these application fields is to
control the output of a system with initially unknown non-
linear dynamics such that it follows a desired reference signal
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Fig. 1. Core concept of automatic self-design in learning con-
trol systems. Conventional controller design requires manual effort by
human experts, which is expensive, time-consuming and does not scale.
In contrast, the proposed ANODEC approach automatically designs
competitive controllers from input-output data of unknown nonlinear
system dynamics.

for a finite duration of time. Finding a feedback controller
that solves this task is typically time-consuming and labour-
intensive, since it requires modeling and/or system identifica-
tion as well as controller design and adaptation. This greatly
contrasts practical needs for methods and algorithms that
exploit small amounts of input-output data from unknown non-
linear dynamics and autonomously design feedback controllers
that enable accurate tracking of agile finite-time references
(cf. Fig. 1).

In the present contribution we provide an approach that
solves this task and neither assumes knowledge of the system
dynamics nor of the system state or its dimensionality. It auto-
matically designs an output feedback controller that tracks
real-time reference signals and does not require these refer-
ences to be repetitive or known ahead of time (AOT).

Similar problems have been addressed by several previous
approaches, most notably in the field of reinforcement learning
(RL) [1], [2]. These methods, however, typically require full
state knowledge, which severly limits applicability [3]. Within
the field of RL, this limitation can be overcome using Partially
Observable Markov Decision Processes (POMDP). RL meth-
ods tailored for POMDPs have been developed [4] and include,
e.g., a recurrent policy function [5], stacking multiple obser-
vations, or, as a patch, a recurrent filter prior to a MDP-RL
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algorithm [6]. Unfortunately, the applicability of these meth-
ods is limited by large data requirements [1], [7]. Moreover,
while some RL methods have been used to effectively learn
feedback control, they always assumed a single-objective
trial-invariant state-dependent reward function which encodes
information about a reference signal or target state that is
usually known AOT [8].

More system-and-control-rooted approaches to similar tasks
include optimal control (OC) and iterative learning control
(ILC) methods and almost always require a known system
model. OC approaches, including model-predictive control,
typically optimize a state-dependent quadratic loss and thus
assume full state knowledge [9]. Even recent data-driven
methods still require knowledge of a nominal model of the
dynamics and only learn the model mismatch from data [10].
ILC approaches, see, e.g., [11], [12], may not assume full
state knowledge, but their design requires a system model or
experimental tuning, and they assume a reference signal that
is known AOT and typically trial-invariant.

In the present work we propose a solution based on neu-
ral ordinary differential equations (ODEs), in which the
right-hand-side of an ODE is parameterized by a neural
network. This concept is enabled by numerical integrators
being differentiable operations in the context of automatic
differentiation and has recently gained traction [13]. Neural
ODEs are not only used for modeling [13], [14] but also
for representing controllers [15], [16]. In contrast to previous
work on the latter, we assume to have no prior knowl-
edge about the state or the dynamics of the system to be
controlled.

Precisely, we propose Automatic Neural ODE Control
(ANODEC) (cf. Fig. 1), a data-efficient automatic design
of neural ODE feedback controllers for finite-time refer-
ence tracking in systems with unknown nonlinear dynam-
ics. ANODEC consistently outperforms two common control
approaches, and achieves an on average ≈ 30 % / 17 %
lower median RMSE. This is demonstrated using multiple,
qualitatively different and out-of-training-distribution refer-
ence signals in several double-pendulum dynamics and vehicle
steering dynamics.

II. PROBLEM FORMULATION

Assume there exists some unknown system dynamics � that
maps a time-varying, finite-time input signal u(t) ∈ Rp to a
possibly noisy output vector y(t) ∈ Rq, that is

y(t) = �
[
u(t′ < t)

] ∀t ∈ [0, T], (1)

where T ∈ R is the finite trial duration. Here, � can be
thought of as any causal, time-invariant, potentially nonlinear,
deterministic dynamical system, which includes, e.g., linear
state-space models, nonlinear higher-order differential equa-
tions, and lifted-system dynamics. However, at least in the
present work, the systems should be well-behaved in the sense
that they exhibit none of the following very challenging phe-
nomena: Finite escape times [17], ill-conditioned linearizations
[18], or non-minimum phase characteristics [19].

We want to design a feedback controller that manipu-
lates u(t) to let y(t) follow a given time-varying reference
signal r(t) ∈ Rq. Thus, we seek to find a controller dynamics
� that maps r(t) and y(t) to the input vector u(t), i.e.,

u(t) = �
[
r(t′ < t), y(t′ < t), t

] ∀t ∈ [0, T], (2)

Fig. 2. Internal two-step approach underlying Automatic Neural ODE
Control (ANODEC): (A) First, a neural ODE that models the unknown
nonlinear dynamics of system � is learned from input-output data (green
arrow left side). (B) Then, a performant neural ODE controller is learned
from thousands of forward simulations of the closed-loop system of the
frozen model (blue highlighting) and the neural ODE controller. The
optimization objective of the neural ODE controller is accurate refer-
ence tracking in the closed loop system (green arrow right side) subject
to randomly drawn reference signals r (t) from the Reference Signal
Distribution (RSD).

such that it minimizes the tracking error between the output
and the reference signal, i.e.,

�∗ = arg min
�

∫ T

0
‖r(t)− y(t)‖2dt, (3)

over the finite trial duration. Here, � can be used to express
any causal, potentially nonlinear and time-variant, determinis-
tic dynamical system, which includes, e.g., transfer functions,
dynamic nonlinearities, and recurrent neural networks.

Synthesizing a feedback controller that only measures the
output of the system dynamics �, and not the state, is a par-
ticularly challenging problem, especially when the reference
signal is only provided in real time and not ahead of time.
Note that this problem formulation assumes no knowledge of
the inner or physical state of the system dynamics � or of its
dimensionality. We do, however, assume that the system cap-
tured by � is repeatedly reset to some trial-invariant initial
state before every trial.

III. AUTOMATIC NEURAL ODE CONTROL (ANODEC)
Here, we present the mathematical formulation of the

proposed method ANODEC. Generally speaking, ANODEC
designs controllers in a two-step approach of model learning
and controller learning (cf. Fig. 2). However, the two steps are
internal to the algorithm and don’t require any intermediate
human attention, which contrasts the typical manual approach
of system identification and controller design. The content
of this section is split up according to these two steps in
Sections III-A and III-B, respectively.

A. Model Learning
The requirement of learning a feedback controller using the

model, necessarily forces us to model causally. One-shot mod-
els that map a sequence to a sequence are not possible. While
ordinary differential equations (ODEs) have a long history for
modeling of physical (causal) phenomena, neural networks
are a first choice for function approximation from data. We
thus choose the combination of both, i.e., neural ODEs, for
automatic data-driven model learning. Additionally, neural
ODEs are differentiable, which will facilitate fast controller
optimization in Section III-B.

We approximate � in (1) by a neural ODE that is learned
from experimental input-output data (ui, yi) (more on data
requirements in Section IV-A). The state of the dynamical
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system � is not observed. The neural ODE that approxi-
mates � is given by

dξ (m)(t)

dt
= f (m)

θ

(
ξ (m)(t), u(t)

)
,

ŷ(t) = g(m)
θ

(
ξ (m)(t)

)
, (4)

where f (m)
θ and g(m)

θ are feedforward neural networks,
u(t) ∈ Rp the network input, ŷ(t) ∈ Rq the network output,
and ξ (m) is the latent state vector of arbitrary dimension in
which the neural ODE evolves. We denote the vector of all
parameters of f (m), g(m) by θ(m) and use supervised learning
and training data of input-output pairs (ui, yi) to estimate and
then optimize for these parameters

θ(m)∗ = arg min
θ(m)

E
(u,y)

[∫ T

0

∥∥y(t)− ŷ(t)
∥∥

2dt

]
. (5)

B. Controller Learning
As a second step, we design a controller using the trained

model (cf. Section III-A) with frozen parameters θ(m)∗ . In con-
trast to previous approaches [15], [16], we assume to have no
measurements of the state of the dynamical system, i.e., we
consider output feedback control. A performant controller, in
the sense of Section II, is learned from a very large num-
ber of forward simulations of the trained model with different
reference signals.

We represent the controller � as a neural ODE, given by

dξ (c)(t)

dt
= f (c)

θ

(
ξ (c)(t), r(t), y(t), t

)
,

u(t) = g(c)
θ

(
ξ (c)(t)

)
, (6)

where f (c)
θ and g(c)

θ are feedforward neural networks and ξ (c) is
the latent state vector of arbitrary dimension in which the neu-
ral ODE evolves. We then close the loop between the neural
ODEs that approximate the system dynamics � and the con-
troller �. The resulting closed-loop ODE takes the reference
r(t) as an input and outputs ŷ(t). Ideally, this mapping should
be identity, and thus we optimize the controller parameters
θ(c) via

θ(c)∗ = arg min
θ(c)

(
λ(c)

∥∥∥θ(c)
∥∥∥

2
+

E
r(t)∼R

[∫ T

0

∥∥r(t)− ŷ(t)
∥∥

2dt

])
(7)

where λ(c) is a small regularization weight, and R is the ref-
erence signal distribution (RSD) (cf. Section IV-D). Note that
ANODEC can easily be trained for a certain noise type and
level by disturbing the model output, i.e., ŷ → ŷ + ε in (7)
where ε can be drawn from any distribution. Finally, note
that deliberate choices in the neural network architecture of
the model (cf. Section IV-B) allow to omit additional cost
terms in (7) that are typically used to prevent model inver-
sion. Such terms are not required here, as a similar effect is
achieved by limiting the rate of change of the model output
(cf. Section IV-B).

Algorithm 1 Functions for Drawing u(t) to Probe the System
Precondition: ts is array of timesteps, seed is integer, scale is float

function DRAWGP(ts, seed, scale= 0.25)
kernel ← 0.15 squaredExpKernel(length= 0.75)
us ← gaussianProcess(kernel, ts, seed)
us ←

(
us−mean(us)
std(us)

)
× scale

return us
function DRAWCOS(ts, seed)

ω ← 2π× seed
us ← cos(ω × ts)

√
ω

2
return us

IV. ALGORITHM

In this section we layout the required details to implement
ANODEC. This includes the specific choices of feedforward
neural networks fθ , gθ that parameterize (4) and (6) and
how integration, expectation, and minimization operators
of (5) and (7) are resolved.

A. Data Requirements
To apply ANODEC, a (training) dataset D that comprises N

pairs of input-output data (each corresponding to one trial)
must first be gathered from the system dynamics �. The model
learning (cf. Section III-A) then uses the dataset

D = {(ui(t), yi(t))|i ∈ 1 . . . N}. (8)

Input trajectories u(t) for gathering the data thus probing the
system are drawn from a cosine frequency generator and a
smooth Gaussian process with an overall dataset that is split
with a ratio of 3:1. These functions are provided as pseudo-
code in Algorithm 1. Between each trial the system resets to a
trial-invariant initial state. Without loss of generality, we here
make the choice of trials that last T = 10 s and are recorded
at a sampling rate of 100 Hz. This leads to, e.g., an array
representation of ui ∈ R1000×p ∀i.

Finally, for the remainder of this document we assume
that in addition to the training dataset there exists a separate
validation dataset that comprises three trials.

B. Neural Network Architecture
To parameterize the right-hand-side in (4), we use a fully-

connected neural network f (m)
θ : RN(m)×p → RN(m)

(
ξ (m)(t)ᵀ, u(t)ᵀ

)ᵀ → Linear→ Relu

→ Linear→ Tanh

→ dξ (m)(t)

dt
∀t ∈ [0, T], (9)

with a width of N(m), a latent state vector ξ (m) ∈ RN(m)
and a

layer size of N(m). Note the usage of Tanh in (9) to limit the
rate of change of the latent state. Bounding the absolute rate of
change from above in combination with a finite trial duration
ensures that the model state and output will also stay within
bounds. Similarly, in (4) g(m)

θ : RN(m) → Rq is parameterized
as a single Linear layer, i.e., as a linear affine transformation.
Note that the Tanh is used for system dynamics f (m)

θ and not
for system output g(m)

θ , and since the latent state ξ (m) can be
arbitrarily scaled by g(m)

θ , limiting the rate of change of ξ (m)

does not impose restrictions on the model output range.
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To parameterize the controller, i.e., the right-hand-side
in (6), we let f (c)

θ : RN(c)×q×q → RN(c)
be a Linear layer

and g(c)
θ : RN(c) → Rp with ξ (c)(t)→ Linear→ Tanh→

u(t) ∀t ∈ [0, T]. Together the two latent state dimensionali-
ties of model N(m) and controller N(c) are the hyperparameters
of ANODEC.

C. Time Integration
We use Runge-Kutta of fourth order (RK4) to obtain a

numerical solution of the integration in (5) and (7) together
with the initial condition ξ (m)(t = 0) = 0 and ξ (m)(t = 0) =
ξ (c)(t = 0) = 0, respectively.

D. Expectation and Minimization Operators
For model training the training dataset D is split into four

minibatches. In (5) the expectation operator E
(u,y)

is estimated

using a single minibatch. Gradients are then computed and
an optimizer step is performed. After an epoch is finished
(equaling four optimizer steps) the dataset is shuffled. For
model training the minimization operation arg minθ(m) is per-
formed using the Adam optimizer, a cosine-decaying learning
rate schedule and norm-based and absolute value gradient clip-
ping. The model is trained for (at most) 700 epochs and the
validation dataset is used for early stopping.

The expectation operator E
r(t)∼R

in (7) is estimated using a

minibatch of six references where at every epoch thirty refer-
ence signals (containing five minibatches) are drawn randomly
from the training RSD R = steps(0, 3) defined by

steps(a, b) =
{

r(t) = sr0 ∀t ∈ [0, T]
∣∣∣

r0 ∈ U([a, b])
s ∈ U({−1, 1})

}

(10)

where a, b ∈ R and U(·) denotes a uniform distribution over
a set. For controller training the minimization operation
arg minθ(c) is performed using the same optimization strategy
as it is used for model training with the addition of a small reg-
ularization weight λ(c) = 0.1 in (7). The controller is trained
for 1200 epochs.

E. Software Implementation
A software implementation of ANODEC and of the entire

research project, including the routines to simulate the exam-
ple systems used for validation (cf. Sections V-A, V-B), is
available https://github.com/SimiPixel/chain_control.

The Python-based software uses JAX [20] and
MuJoCo [21]. The ANODEC pipeline requires less
than two minutes of compute time on a i7-1165G7. The
trained neural ODE controller can be applied in real time at
well above 100 Hz.

V. IN-SILICO VALIDATION

In this section we validate ANODEC (cf. Sections III, IV)
on four simulated complex nonlinear dynamical systems:
(A) three different spring-damper double pendulum systems
(DPs) (cf. Section V-A) and (B) a vehicle with Ackermann
steering (AST) (cf. Section V-B). To showcase generalization
capabilities of ANODEC in Section V-E, we propose several
unseen reference signal distributions that, in Section V-F, will
be used to validate ANODEC’s performance compared to a
system-specific optimal baseline (cf. Section V-D).

A. Double Pendulum (DP) System
A first dynamical system � (cf. Section II) that is used for

validation is a DP attached to a cart that moves horizontally
on a slider using a single motor input. A connected DP with
two consecutive hinge joint segment pairs is attached to the
cart. Both hinge joints are damped with a factor γ ∈ R, and
are being pulled into a straight position by springs with stiff-
ness k ∈ R. Gravity would lead to less challenging dynamics,
so it is disabled. The single input of the system is the cart’s
motor input moving the cart left-to-right on the slider. The
single output is the left-to-right Cartesian coordinate of the
end effector of the double pendulum, i.e., the end position of
the second segment.

We investigate three parametrizations of this system cor-
responding to DP1/DP2/DP3, γ = 6.0× 10−2/ 3.0× 10−2/
1.5× 10−2, and k = 6.0/3.0/1.5, respectively. This results
in notably different pendulum swinging characteristics. All
three systems are simulated using MuJoCo [21], the training
dataset (8) contains N = 12 trials, and the neural network
widths of model and controller are chosen as N(m) = 50 and
N(c) = 15.

B. Ackermann Steering (AST) System
To showcase applicability across different application

systems, we also validate ANODEC for the system dynam-
ics of a vehicle with Ackermann Steering. The vehicle with
width wr = 1.5 m and length lr = 4.0 m drives for-
ward with a constant velocity of vr = 3 m s−1. The single
input of the system is the steering wheel angle φr in radi-
ans, clipped to a range [ − 30.0◦, 30.0◦]. The single output
of the system is the Cartesian y-position of the vehicle
yr ∈ R. The dynamics are given by dθr(t)

dt = vr
lr

tan(φr(t)+ε)
−wr

2
,

and d
dt

[
xr(t)
yr(t)

]
= vr

[
cos(θr(t))
sin(θr(t))

]
, where θr ∈ R is the angle

between the cart’s forward / length axis and the global x-axis,
and xr ∈ R is the Cartesian x-position of the vehicle. Initially,
xr(t = 0) = yr(t = 0) = θr(t = 0) = 0, i.e., the vehicle is
aligned with the global x-axis.

For this system the training dataset (8) contains N = 24
trials, and the neural network widths of model and controller
are chosen as N(m) = 25 and N(c) = 25.

C. Noisy System Output
In all simulations we consider noisy output measurements

by adding Gaussian white noise with a standard deviation of
0.02 m to the system output y(t) in (1). Note that in Fig. 4
we merely plot the noise free system output, yet the controller
still observes the noisy system output.

D. Baseline Controllers
We compare the performance of ANODEC to two baseline

controllers: One controller that assumes the ability to perfectly
tune a PI or PD controller, one controller that assumes that
perfect model knowledge is available at least locally in the
form of a linearization of the plant around its initial state.

1) Optimal-Tuning Baseline Controller: As a first baseline
controller we determine, for each of the four systems, an
optimal PI or PD controller (whichever performs better) by
performing two exhaustive grid searches for both gains on
the true system dynamics. At every grid point we evaluate
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Fig. 3. Trained neural ODE controller’s performance relative to the optimal-tuning controller baseline and model-knowledge controller base-
line on all combinations of four systems and five reference signal distributions (RSDs). For each combination of system and RSD, the
25%/50%/75%−percentiles are obtained from 100 randomly drawn references from the RSD. The neural ODE controller achieves an on aver-
age ≈ 30 % / 17 % / 7 % / 40 % lower median RMSE across all validation and test combinations compared to the optimal-tuning controller baseline
/ model-knowledge controller baseline / the best out of the two baselines / the worst out of the two baselines.

the PI (or PD) controller’s performance for 15 reference sig-
nals drawn from the training RSD (cf. Section IV-D) that are
fixed across grid points. Note that this yields the best possible
PI/PD controller for the given task and that performing such
an exhaustive parameter optimization would require enormous
amounts of interaction time in real-world systems.

2) Model-Knowledge Baseline Controller: As a second base-
line controller we determine, for each of the four systems, a
5th-order transfer function controller by linearization of the
nonlinear system around the initial state and pole placement
of the closed loop. We find a suitable set of poles by grid
search.

Note that these controllers constitute well-performing base-
lines. Of course better performing controllers could be
obtained at the cost of increased tuning efforts or more restric-
tive assumptions such as perfect nonlinear model knowledge,
but this is beyond the scope of this contribution.

E. Generalization to Tracking of Unseen Reference
Signals

A common criticism of data-driven/machine-learning-based
solutions is that they might only perform well in cases that
are covered by the training+validation dataset. To verify
that ANODEC generalizes beyond reference signals from the
training+validation RSD, we test the performance on various
additional, qualitatively different RSDs. We denote the train-
ing RSD steps(0, 3) (cf. Section IV-D) by ‘small steps’, and
we additionally define:
• ‘big steps’: steps(4, 8), (cf. Equation (10))
• ‘double steps’: like ‘small steps’, but re-draws step

amplitude mid trial at t = 5 s,
• ‘smooth’:

{
r(t) = �[drawGP(seed)] ∀t ∈ [0, T] |seed ∈ U(N)

}
,

• ‘smooth constant’: like ‘smooth’, but the reference
becomes a constant mid trial at t = 5 s.

Note that only references from ‘smooth’ RSD are
feasible.

F. ANODEC Reference Tracking Performance
We validate the proposed method (cf. Sections III, IV)

against the optimal-tuning and model-knowledge base-
line controllers (cf. Section V-D) for each of the four
systems (cf. Sections V-A, V-B) and five choices of RSD
(cf. Section V-E). To this end we draw, for every combina-
tion of system and RSD, 100 signals from the correspond-
ing RSD. After forward simulation of the 100 trials, the
tracking RMSE (mean across time) of the neural ODE con-
troller is divided by the tracking RMSE of the controller
with the worst performance out of the three. Finally, the
25%/50%/75%−percentiles of this relative RMSE are deter-
mined across the 100 trials. We choose to visualize the relative
RMSE since the absolute RMSE varies orders of magnitude
across systems and RSDs.

Results are shown in Fig. 3 and we observe: Even on
previously unseen reference signals, ANODEC outperforms
both baseline controllers in 12 out of the 16 cases and achieves
an on average ≈ 30 % / 17 % / 7 % / 40 % lower median
RMSE across all validation and test combinations compared to
the optimal-tuning controller baseline / model-knowledge con-
troller baseline / (for each combination of system and RSD)
best out of the two baselines / worst out of the two baselines.

Fig. 4 showcases the performance of the trained neural
ODE controller compared to the optimal-tuning baseline con-
troller (the better out of the two baselines for this system
and RSD combination) for the example of the DP2 system
with two beyond-training-distribution reference signals (drawn
from two RSDs). The neural ODE controller not only signif-
icantly outperforms the optimal-tuning baseline controller in
a sense of error norm. It also successfully dampens occurring
oscillations, unlike the optimal-tuning baseline controller, and
follows reference steps not only faster but in a more controlled
way.

VI. CONCLUSION

In this contribution we have proposed Automatic Neural
ODE Control (ANODEC), a fully automatic design of
feedback control for finite-time output tracking in systems
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Fig. 4. Tracking performance of the optimal-tuning baseline controller (left) compared to the trained neural ODE controller (right) on two exemplary
test reference signals that go beyond training distribution (drawn from ‘big steps’) in the double pendulum system (DP2). The system when con-
trolled by the neural ODE controller reaches the reference point faster and with less oscillations. Video (https://youtu.be/tttkFFD81Qw) showcasing
ANODEC on both reference signals in consecutive order (blue then green).

with unknown nonlinear dynamics. ANODEC is able to
—automatically— design controllers that outperform two
baselines, and achieves an on average ≈ 30 % / 17 %
lower median RMSE compared to two common approaches
that either obtain a baseline controller by optimal tuning
or by assuming perfect linear model knowledge around the
initial state. This has been demonstrated in four different
nonlinear systems using multiple, qualitatively different and
even out-of-training-distribution reference signals. ANODEC
achieves this whilst requiring only two (or four) minutes
of interaction data. ANODEC marks an important step
towards data-efficient yet performant learning control solutions
that generalize across different application systems and are
easy-to-use.

Future work should aim to overcome the assumption of a
trial-invariant initial state and include broad experimental eval-
uation of the method, also on high-dimensional multiple-input
multiple-output systems with potentially strong nonlinearities.
Furthermore, we aim to apply ANODEC in an iterative fash-
ion allowing for automation of a minimal (yet sufficient)
data retrieval, and provide more comparison of ANODEC
to state-of-the-art data-driven methods. Finally, future work
should involve a theoretical analysis of ANODEC to assess
stability, guarantee safety, and quantify control performance
trade-offs.
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A Soft Robotic System Automatically Learns Precise Agile Motions
Without Model Information

Simon Bachhuber1†, Alexander Pawluchin2†, Arka Pal3, Ivo Boblan2, Thomas Seel4

Abstract— Many application domains, e.g., in medicine and
manufacturing, can greatly benefit from pneumatic Soft Robots
(SRs). However, the accurate control of SRs has remained a sig-
nificant challenge to date, mainly due to their nonlinear dynam-
ics and viscoelastic material properties. Conventional control
design methods often rely on either complex system modeling or
time-intensive manual tuning, both of which require significant
amounts of human expertise and thus limit their practicality.
In recent works, the data-driven method, Automatic Neural
ODE Control (ANODEC) has been successfully used to – fully
automatically and utilizing only input-output data – design
controllers for various nonlinear systems in silico, and without
requiring prior model knowledge or extensive manual tuning.
In this work, we successfully apply ANODEC to automatically
learn to perform agile, non-repetitive reference tracking motion
tasks in a real-world SR and within a finite time horizon. To the
best of the authors’ knowledge, ANODEC achieves, for the first
time, performant control of a SR with hysteresis effects from
only 30 s of input-output data and without any prior model
knowledge. We show that for multiple, qualitatively different
and even out-of-training-distribution reference signals, a single
feedback controller designed by ANODEC outperforms a man-
ually tuned PID baseline consistently. Overall, this contribution
not only further strengthens the validity of ANODEC, but it
marks an important step towards more practical, easy-to-use
SRs that can automatically learn to perform agile motions from
minimal experimental interaction time.

I. INTRODUCTION

Soft Robots (SRs), including Pneumatic Soft Actuators
(PSAs) and Pneumatic Artificial Muscles (PAMs), are gain-
ing significant interest in diverse (bio)medical and industry
application domains [1], [2]. Their rising popularity can
be attributed to their inherent soft characteristics, derived
from the use of flexible and deformable materials, which
enables SRs to offer unique capabilities and adaptability in
uncertain environments [3]. These attributes prove particu-
larly advantageous in scenarios such as rehabilitation support
[4] and human-robot interaction [5], where providing a safe
interaction environment without external sensors and safety
mechanisms is crucial.

Unfortunately, the very features that give PSAs their
unique advantages also introduce several challenges for their
accurate control, a dilemma that is yet to be fully addressed
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Fig. 1. Comparison between conventional controller design, reliant
on human expertise, and an automatic, data-driven control structure for
Pneumatic Soft Actuators (PSAs). Both controller design paradigms observe
the PSA’s control signal and resulting measured motion, and subsequently
design position feedback controllers that enable the measured motion of the
PSA to track the desired motion. In this work we show that the data-driven
method, Automatic Neural ODE Control (ANODEC), enables automatic
control design for a PSA.

[3]. These challenges are for example: a) strong nonlinear-
ities as the dynamics of PSAs are tightly coupled to the
actuator’s velocity which leads to lower control accuracy
and overshoot, and b) creeping and hysteresis (cf. Figure 3,
bottom subplot) due to the viscoelasticity and time-dependent
properties of the soft material.

Despite these challenges, several methods have been previ-
ously applied for the control of PSAs. Model-based methods
have been applied for PSAs such as, e.g., [6]–[9] but they
typically require a detailed system model for accurate control
and therefore involve extensive system modeling combined
with human expertise.

Data-driven methods can alleviate the need for extensive
system modeling and have been applied for PSAs. In [10],
[11], Koopman operators are used to achieve reference
tracking of a SR, however, they make restrictive assumptions
such as either weak hysteresis characteristics or non-agile
reference trajectory targets. In [12]–[14], a DNN-based MPC
was employed to control SRs but they typically focus on non-
agile motions and within a computationally intensive frame-
work. In [15], an ODE-based kinematic model is learned and
combined with MPC in order to learn to perform non-agile,
quasistatic motions. In [16]–[18], Iterative Learning Control



(ILC) in combination with different feedback controllers are
used for the control of PSAs. However, ILC is tailored to
repetitive motions and requires a series of iterations. Only
in [18], deep learning is used to interpolate from previously
learned trajectories and to achieve a broader range of mo-
tions, but they require large amounts of system interaction
time to learn a single motion.

Recently, the data-driven method, Automatic Neural ODE
Control (ANODEC) has been shown to – fully automatically
– design feedback controllers for various nonlinear systems
in silico, and without requiring prior model knowledge or
extensive manual tuning. Unlike various other data-driven
methods, e.g., [19]–[24], ANODEC requires neither the full
state to be observed nor does it require an approximate
system model.

In this contribution, we successfully apply ANODEC to
automatically learn to perform agile, non-repetitive reference
tracking motion tasks in a real-world PSA within a finite time
horizon. To the best of the authors’ knowledge, ANODEC
achieves, for the first time, performant control of a PSA with
hysteresis effects (cf. Figure 3) from only 30 s of input-output
data and without any prior model knowledge. Additionally,
the single feedback controller designed by ANODEC enables
tracking of arbitrary reference signals and is validated on
multiple, qualitatively different, and even out-of-training-
distribution reference signals. Moreover, it is shown that AN-
ODEC outperforms a manually tuned PID baseline, which
similar to ANODEC, requires no prior model knowledge and
does not require the system state to be observed.

Overall, it is shown that ANODEC allows for automatic
control design (cf. Figure 1) and can enable PSAs to learn
to perform agile motions from only a parsimonious amount
of experimental interaction time and without requiring any
prior model knowledge.

II. PNEUMATIC SOFT ACTUATOR

We consider a PSA, as shown in Fig. 2, that typically
consists of a rigid or continuous kinematic structure and is
driven by an antagonistic pair of PAMs. The muscles are
attached via a belt and form a 1-Degree-of-Freedom (DOF)
arm. The hinge joint angle represents the system output φ ∈
R and it is limited by the geometrical configuration of the
muscle contraction and diameter of the pulley such that the
range of motion φ ∈ [φmin, φmax] where φmin/max ∈ R.

Each of the PAMs exhibits undesired parasitic hysteresis
and creep properties that strongly influence the nonlinear
characteristic force map F1,2 ∈ R. Given the unknown forces
F1 and F2, we instead control the pressure in the bellows. For
this purpose, we use two model-based pressure controllers,
which are designed to follow the given desired pressure
pd,1 ∈ R and pd,2 ∈ R.

Based on this system description, the system output is
given by

φ(t) = Ψ̃ (pd,1(t
′ < t), pd,2(t

′ < t)) ∀t ∈ [0, T ], (1)

where Ψ̃ captures the system’s dynamics (including the two
pressure controllers), T ∈ R is the finite trial duration and
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Fig. 2. The PSA including two PAMs is controlled using two pressure
controllers, which implement a SISO control strategy through the mean and
difference pressure approach. As a result, the single control input u controls
both desired difference pressures pd,1/2, and the single system output is the
hinge joint angle φ.

where pd,1/2(t
′ < t) is used to denote that φ(t) depends on

all desired pressures up to time t, i.e., pd,1/2(t
′) ∀t′ < t.

Since the PSA has two pressure inputs, we couple them
using the mean pressure approach in (2) to reduce the input
dimension which then yields a Single-Input Single-Output
(SISO) system. This is done by defining a mean pressure
pm = const. ∈ R and a difference pressure ∆pd = pd,1−pd,1,
i.e.,

pd,1 = pm + 0.5u and pd,2 = pm − 0.5u. (2)

The difference pressure becomes the system’s single control
input u ∈ R, i.e., u := ∆pd, which is limited by the
maximum physical permissible pressure range umin ∈ R and
umax ∈ R. Finally, using (1) and (2), the system in SISO
configuration is given by

φ(t) = Ψ (u(t′ < t)) ∀t ∈ [0, T ]. (3)

where the functional Ψ is called the system input-output map.
In this work, we aim to design a feedback controller that

manipulates u(t) to let φ(t) follow a given time-varying
reference signal φd(t) ∈ R. Thus, we seek to find a controller
Φ that maps the desired angle φd(t) and the measured output
φ(t) to the input vector u(t), that is,

u(t) = Φ (φd(t
′ < t), φ(t′ < t)) ∀t ∈ [0, T ], (4)

such that it minimizes the tracking error between the output
and the reference signal, i.e.,

Φ∗ = argmin
Φ

∫ T

0

∥φd(t)− φ(t)∥2 dt (5)

over the finite trial duration T . Note that the desired feedback
controller measures the system output and not the state and
that an arbitrary reference signal can be provided in real
time and must not be provided ahead of time. However, we
assume that the system captured by Ψ is repeatedly reset to
some trial-invariant initial state before each trial, and that the
open-loop system can be safely probed for input-output data.
Note that the latter assumption is not only true for open-loop
stable systems but can also be true for unstable system where



0 1 2 3 4 5
time [s]

−5

0

5

u
i
(t

)
[b

ar
]

Difference Pressure (System Input)

0 1 2 3 4 5
time [s]

−1

0

1

φ
i
(t

)
[r

ad
]

Hinge Joint Angle (System Output)

−5.0 −2.5 0.0 2.5 5.0
ui(t) [bar]

−1

0

1

φ
i
(t

)
[r

ad
]

Configuration Space

1
Fig. 3. Training data for ANODEC consists of five input-output pairs, each
of a five seconds length, that are gathered from the experimental PSA. One
additional input-output pair (dashed line) is collected and used as validation
data and to prevent model overfitting. The feasible input and output intervals
of the experimental PSA are u(t) ∈ [−6, 6] bar and φ(t) ∈ [−1, 1] rad,
respectively.

the instability acts on large timescales relative to the finite
trial duration, i.e., it is sufficiently slow.

III. AUTOMATIC NEURAL ODE CONTROL (ANODEC)

Internally, the ANODEC algorithm [25] designs con-
trollers in a two-step approach of model learning from input-
output data pairs, and controller learning that utilizes the
learned model.

A. Data Requirements

To apply ANODEC, a dataset D that comprises of six
pairs of input-output data over time, each corresponding to
one trial of length T = 5 s, is gathered from the system
input-output map Ψ. The data is recorded at 100Hz. Fig. 3
shows the six input-output data pairs.

The model learning (cf. Section III-B) then uses the dataset

D = {(ui(t), φi(t))|i ∈ 1 . . . 6}. (6)

The sixth pair of input-output data is split from the dataset D
and used as validation data. The validation data is used
to ensure that the learned model is accurate and that the

amount of collected data is sufficient for an accurate model.
Thus, in total ANODEC requires 30 s of interaction time
with the PSA. Input trajectories u(t) for gathering the data
and thus probing the system are drawn from a sinusoidal
and a spline function generator. These functions are provided
as pseudocode in Algorithm 1. Before each trial starts, the
system enters a saturation state such that φ(t = 0) ≈ φmax.
This procedure is required as otherwise there might be state
ambiguity due to the hysteresis of the PAMs. Note that the
system probing and model learning step (cf. Section III-B)
can easily be extended to an iterative process that switches
between system probing and model learning until a suffi-
ciently accurate model is obtained. This way ANODEC can
be extended to a fully autonomous control design algorithm
that iteratively improves the performance of the designed
feedback controller.

B. Model Learning

ANODEC approximates Ψ in (3) by a neural ODE that is
learned from pairs of experimental input-output trajectories
ui(t), φi(t) (cf. Section III-A). The neural ODE that approx-
imates Ψ is given by

dξ(m)(t)

dt
= tanh

(
A

(m)
1

(
ξ(m)⊺(t), u(t)

)⊺
+ b

(m)
1

)
, (7)

φ̂(t) = A
(m)
2 ξ(m)(t) + b

(m)
2 ,

where the latent state vector ξ(m) ∈ R9, and with model
parameters A(m)

1 ∈ R9×10, b(m)
1 ∈ R9, A(m)

2 ∈ R1×9, b(m)
2 ∈

R. We denote the vector of all model parameters by θ(m) ∈
R109 and use supervised learning to estimate and then
optimize for these parameters

θ(m)∗ = argmin
θ(m)

5∑

i=1

∫ T

0

∥φi(t)− φ̂i(t)∥2 dt. (8)

C. Controller Learning

As a second step, ANODEC designs a feedback controller
using the trained model with frozen parameters θ(m)∗ . Inter-
nally, it performs a very large number of forward simulations
of the closed-loop dynamics (of trained model and feedback
controller) with randomly drawn step reference signals.

ANODEC represents the controller Φ as a neural ODE,
given by

dξ(c)(t)

dt
= A

(c)
1

(
ξ(c)⊺(t), φ(t), φd(t)

)⊺
+ b

(c)
1 , (9)

ū(t) = tanh
(
A

(c)
2 ξ(c)(t) + b

(c)
2

)
,

u(t) = (umax − umin) (ū(t) 0.5 + 0.5) + umin,

where the latent state vector ξ(c) ∈ R5, and with controller
parameters A

(c)
1 ∈ R5×7, b(c)1 ∈ R5, A(c)

2 ∈ R1×5, b(c)2 ∈ R.
We denote the vector of controller parameters by θ(c) ∈ R46.

ANODEC then closes the loop between the neural ODEs
that approximate the system input-output map Ψ (7) and
the controller Φ (9). The resulting closed-loop ODE takes
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Fig. 4. Two experimental setups of a pneumatic arm with a single DOF. In
both setups, two PAMs (pneumatic artificial muscles, black tubes) are used
as an antagonistic pair to control the arm’s forces and position. The upper
setup shows the simplest configuration without the influence of gravity and
external load. The lower setup is loaded with an external weight of 0.6 kg,
with a lever arm of 0.25m oriented against gravity. Both arms are fixed to
the ground to prevent undesired movements.

the reference φd(t) as an input and outputs φ̂(t), and we
optimize the controller parameters θ(c) via

θ(c)
∗
= argmin

θ(c)

(
λ(c)

∥∥∥θ(c)
∥∥∥
2
+

E
φd∼U(φmin,φmax)

[∫ T

0

∥φd − φ̂(t)∥2 dt
])

(10)

where λ(c) = 4 · 10−4 is a small regularization weight, and
the reference φd is a constant value drawn uniformly from
[φmin, φmax].

D. Time Integration & Optimization

We use Runge-Kutta of fourth order (RK4) to obtain a
numerical solution of the time integration in (8) and (10),
together with the initial condition ξ(m)(t = 0) = 0 and
ξ(m)(t = 0) = ξ(c)(t = 0) = 0, respectively.

For model training, the five input-output pairs from the
training dataset D are combined into a single model train-
ing batch. For controller training, the expectation operator

E
φd∼U(φmin,φmax)

is estimated by randomly drawing 50 constant

reference values at every optimizer step.
Both (8) and (10) are optimized using the Adam optimizer

with a learning rate of 1×10−3 and global gradient L2 norm
clipping of 1.0. Gradients are computed using backpropaga-
tion. The model is trained for 50 000 optimizer steps and the
single validation input-output pair is used for early stopping
and thus prevent overfitting during the model learning. The
controller is trained for 12 000 optimizer steps.

IV. EXPERIMENTAL VALIDATION

In this section, we validate ANODEC (cf. Section III)
on an experimental PSA (cf. Section II). To showcase the
generalization capabilities of ANODEC in Section IV-C, we

propose unseen reference signal distributions that, in Sec-
tion IV-D, will be used to validate ANODEC’s performance
compared to a PID controller baseline (cf. Section IV-B). The
corresponding demonstration video to the presented results
in Fig. 5 can be found here.

A. Experimental setup
We evaluate ANODEC’s performance on a pneumatic

compliant robotic arm which should solve a pick and place
motion task on a given reference trajectory. The arm, as
depicted in Fig. 4, consists of both an upper and a lower
arm. The upper arm carries the PAMs responsible for con-
trolling the motion of the lower arm. The hinge joint has a
range of motion within φ ∈ [−1, 1] rad and connects both
PAMs (DMSP-10-250N) via a constant pulley. The angle
is measured using a MLX90316 rotary position sensor. The
upper setup (Setup 1) illustrates the configuration without
external influences such as gravity and load. The lower setup
(Setup 2) shows the arm loaded with a 0.6 kg weight on a
0.25m lever arm against gravity. Due to the non-negligible
mass of the lower arm and the highly agile target motions,
the upper arm is securely fixed to the ground to prevent
undesired movements.

To generate forces, the PAMs are driven using a model-
based pressure controllers and two proportional directional
control valves MPYE-5-M5-010-B for controlling the mass
flow. The controlled pressure is measured using two SPTE-
P10R-S4-B-2.5K pressure transmitters. The supply pressure
was set to 8 bar. This results in a feasible system input range
u ∈ [−6, 6] bar.

The pressure controllers runs on an embedded computer
with a sampling rate of 200Hz. This system is connected
through Ethernet and ROS to a computer (Intel i7 7700) that
controls both ANODEC and PID approaches in Python with
a control rate of 100Hz.

B. Baseline Controller
As a baseline, we compare the performance of ANODEC

to a manually tuned PID controller, which similar to
ANODEC, requires no prior model knowledge and does not
require the system state to be observed. Eleven trials were
required (equaling 55 s of interaction time) for manual tuning
and to achieve a sufficiently performant PID controller. Since
we only control the pressure and have no assumptions regard-
ing the force-pressure relation, an integral part is needed to
compensate for the PAMs force nonlinearity and hysteresis.

The tuned gain parameters are kp = 2, ki = 30 and since
the derivative term of the PID controller is highly sensitive
to the sensor noise from the angle sensor, leading rapidly to
undesired instabilities, the D term is set to zero. The PID
controller’s output u was clipped to stay within the feasible
system input range of [umin, umax]. This is not required for
ANODEC since its output remains within the feasible input
range by design, see (9).

C. Generalization to Tracking of Unseen Reference Signals
A common criticism of data-driven or machine-learning-

based solutions is that they might only perform well in

https://youtu.be/7HkXKy0WuRw
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Fig. 5. Performance comparison of the automatic ANODEC and a manually tuned PID controller baseline in Setup 1 for one exemplary reference signals
drawn from the three reference signal distributions: Step, double step, and smooth. Even on reference signals that were not present during training (double
step, smooth), ANODEC is able to consistently outperform the PID baseline and achieves a lower RMSE tracking error while requiring less experimental
interaction time. Video (https://youtu.be/7HkXKy0WuRw) that showcases these trials.

TABLE I
REFERENCE TRACKING RMSE (IN DEGREES) OF PID AND ANODEC
FOR THREE REFERENCE SIGNAL DISTRIBUTIONS AND TWO SYSTEMS:

STEPS, DOUBLE STEPS, AND CUBIC SPLINES. FOR EACH DISTRIBUTION,
N DISTINCT REFERENCE SIGNALS ARE DRAWN AND USED TO ESTIMATE

THE MEAN-RMSE AND ONE STANDARD DEVIATION.

REFERENCES PID ANODEC

SETUP 1
STEPS (N = 2) 12.89± 6.14 10.03± 4.93
DOUBLE STEPS (N = 2) 12.86± 2.66 11.08± 1.37
CUBIC SPLINES (N = 12) 10.01± 1.44 4.48± 1.11

SETUP 2
STEPS (N = 2) 4.00± 0.45 5.54± 0.53
DOUBLE STEPS (N = 2) 9.50± 4.03 6.81± 0.75
CUBIC SPLINES (N = 4) 4.56± 0.81 5.01± 0.79

the cases covered by the training dataset. To verify that
ANODEC generalizes beyond the step reference signals
(used internally by ANODEC, see (10)), we test the per-
formance on two additional, qualitatively different reference
signal distributions: Double-step and cubic-spline reference
trajectories. In total, 16 different reference signals are used
to validate ANODEC. One exemplary reference signal for
each of the three reference signal distributions is illustrated
in Fig. 5 (dashed black line).

D. ANODEC Reference Tracking Performance

We validate the proposed method (cf. Section III) and
compare to the baseline controller (cf. Section IV-B) for
16 different reference signals (cf. Section IV-C) on the
experimental setup of the PSA (cf. Section IV-A).

ANODEC is able to outperform the PID controller base-
line for all three reference signal distributions, as can be seen
in Table I. Overall, ANODEC consistently outperforms the
PID controller baseline in all 16 reference signals individ-
ually, and achieves a, on average, ≈ 45.9% lower RMSE
tracking error across all reference signals while requiring
less experimental interaction time (30 s versus 55 s). For each
reference signal distribution, one exemplary reference signal

Fig. 6. Tracking performance of ANODEC in two disturbed trials. In the
first trial (top) there are two small disturbances (poking the endeffector with
a stick) whereas in the second trial (bottom) there are four large disturbances
(grabbing and briefly holding the endeffector). ANODEC remains stable and
behaves as expected in both trials.

is drawn. The performance of ANODEC compared to the
PID controller baseline is shown in Figure 5.

Additionally, in Figure 6 we show that ANODEC is stable
even if the trials are heavily disturbed.

These results show that ANODEC enables automatic yet
competitive controller design for a PSA which, in contrast
to conventional methods, requires no human expertise.

E. System Variation

To demonstrate the applicability of ANODEC to a second
experimental system (Setup 2), we modify the experimental
setup as it is described in Section IV-A. This variation
significantly alters the system dynamics because the arm now
rotates vertically, and the attached mass introduces a strong
nonlinear term due to gravity.

The trial duration is extended from 5 s to 8 s and, as
before, we record six input-output pairs (five for training,
one for validation), now resulting in 48 seconds of data.
For this second use case, ANODEC successfully designs a

https://youtu.be/7HkXKy0WuRw


competitive controller. The achieved RMSEs are summarized
in Table I.

V. CONCLUSION

In this contribution, we have demonstrated that the data-
driven method ANODEC can enable PSAs to – fully auto-
matically – learn to perform agile, non-repetitive motions,
from only 30 s of experimental interaction time. Utilizing
only input-output data and without any prior model knowl-
edge, ANODEC designs a single feedback controller that
enables the tracking of arbitrary reference signals, which is
then validated on multiple, qualitatively different, and even
out-of-training-distribution reference signals. Specifically, it
is shown that ANODEC can outperform a manually tuned
PID baseline and achieves an up to 45.9% lower RMSE
tracking error. Overall, this contribution not only reinforces
the validity of ANODEC but also represents a significant ad-
vancement towards developing practical, user-friendly PSAs
capable of learning to perform agile movements with only a
minimal amount of experimental interaction time.

Future work will involve validation on different exper-
imental PSAs, including PSAs with multiple DOFs, and
increasing the autonomy of ANODEC by, e.g., self-tuning
of involved hyperparameters (such as λ(c)) and autonomous
data acquisition.
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APPENDIX

Algorithm 1 Input Trajectory Generator
Require: T ∈ R>0, f ∈ N>0

function GENERATESINUSOIDAL
ω ← 2πf
us ← sin(ω range(0, T, 0.01))

√
ω
2

return us

Require: T ∈ R>0, ∆tmin ∈ R>0, ∆tmax > ∆tmin, umin/max ∈ R
function DRAWSPLINE

ts, us ← [0.0], [0.0]
while last(ts) < T do

t ← last(ts) + uniform(∆tmin,∆tmax)
u ← coinflip(last(us), uniform(umin, umax))
ts, us ← append(ts, t), append(us, u)

us ← cubicInterpolate(range(0, T, 0.01), ts, us)
return us
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