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1. Introduction

In the last decade machine learning has evolved into a wide and popular field with many
applications in real-world scenarios due to increasingly powerful hardware. With the
recent development in Deep learning this trend is unlikely to stop since Deep learning
is capable of modeling even highly complex dependencies/relationships. As an example,
the introduction of convolutional neural networks has been a game changer in the field
of computer vision which is of great importance to many other research areas.
However the majority of machine learning algorithms used in real-world application, in-
cluding Deep learning, fall into the category of supervised learning (see appendix A for
a two-page reminder) [20]. This means that in order to learn, the algorithm must be
provided with sufficient number of input-output-pairs, and consequently the ability to
obtain sufficient labeled data for modeling purposes has become one of the great chal-
lenges in a wide variety of learning problems. Labeled data is often expensive to receive,
since it frequently involves human effort [1]. It is therefore desirable to minimize the
cost associated with labeling data.
One option is to create labeled data cheaply using some non-human entity. This typically
comes at the cost of an inferior label accuracy compared to data labeled by a human
expert. Despite its lower label accuracy, after manipulating this pool of labeled data it
may be capable of generalization and be used to solve the classification problem.
A second option is to rely on a human expert for labeling, but to at least choose the
data to label in such a way that it increases the supervised algorithms performance as
quickly as possible. Thus, the number of needed labels for a given accuracy goal is
heavily reduced. This problem is tackled by the field of active learning.
In the following we will first develop both ideas theoretically and then apply active learn-
ing and label correction to toy examples to show a proof of concept. Next, the encoding
of a real-world dataset is explained and then both ideas are deployed to increase the
label efficiency in the learning associated to the real-world dataset.
Since the real-world dataset poses a classification problem, we restrict ourself to su-
pervised classification and discard regression. Whereas regression deals with predicting
continuous numbers (e.g. mileage of a car), classification predicts the membership to a
finite number of categories (e.g. manufacturer of a car).
To summarize, the goal is to decrease the cost when labeling the required data for su-
pervised classification and consequently make the arguably most prominent machine
learning category more practical.
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2. Active learning

A typical setup in machine learning is the classification of some input data to its cor-
responding class, e.g., assigning a handwritten number its numerical value where the
input is an array of pixel values and the desired output is one of the ten classes. To
achieve this a classifier must first be trained by providing input data with its respective
class membership or label. But labeling data comes at a cost, as it often requires human
labor.
While with passive learning unlabeled samples for the labeling process are chosen ran-
domly, active learning refers to a certain strategy when picking the unlabeled samples.
The goal is to train a classifier to the same capacity with fewer labels or, i.e., to learn
faster when provided with the same amount of labeled training data resulting in a steeper
learning curve. It is therefore most welcome when there is a large number of unlabeled
data and labeling is expensive.
For example imagine an already working classifier that predicts class memberships with
a certain accuracy. During its run time it will accumulate a pool of unlabeled data. To
improve the performance the operator decides to invest resources to label some addi-
tional samples. It would be beneficial to choose those that will teach the classifier the
most and result in the largest performance increase.
Active learning is shown to be effective in binary classification setups [9]. To motivate
this idea of a strategy that leads to the reduction of necessary labels, consider this very
simple example demonstrated in figure 2.1. Imagine dots on a line that have label “mi-
nus one” up to some point on the line and label “plus one” afterwards. This means that
to achieve an error rate less than ε, u = l = O(1/ε) unlabeled and labeled samples are
necessary when the samples to label are chosen randomly (Let X ∼ Binomial(ε,m), then

X = εm != O(1) ⇐⇒ m = O(1/ε)). Applying binary search for choosing the samples to
label reduces the number of labels required to l = O(log2 1/ε).
To see this, draw u randomly chosen unlabeled samples and align them on a line (this
means sorting them by their “x-value”). Their hidden labels will be a sequence of mi-
nus ones and ones. The goal is to find the turning point between minus one and one.
The sequence being sorted allows us to apply binary search. This means choosing the
unlabeled sample in the middle, requesting its label and cutting the sequence in half. If
the label is a minus one repeat this process on the “right” sequence, otherwise on the
“left” until you find the turning point. This reduces the number of labels to find the
turning point to l = log2 u. Since labeling all remaining unlabeled samples would not
give additional information, we conclude that we achieve the same error rate as when all
samples are labeled. Hence, we reach an error rate less than ε by requiring u = O(1/ε)
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Figure 2.1.: Points on a line with label −1 up to some hidden value and +1 afterwards. The
goal is find the hidden value or transition point up to some error. Choosing the
samples to label following a binary search strategy leads an exponential speedup
in the number of labels required to reach some error compared to choosing samples
randomly. Note that the labels are only exposed for clarity.

unlabeled samples and l = O(log2 1/ε) labeled samples. In the latter scenario carefully
choosing the unlabeled samples for the label request reduces the amount of labels needed
exponentially. So, to summarize, the goal of active learning is to exploit the currently
available samples and labels in a way to effectively query samples that maximize the
learning process of the model.

There are two major quantities that go into this decision making process, the informa-
tiveness and representativeness of a sample. The informativeness is a measure of the
ability of a sample to reduce the uncertainty of a model, whereas representativeness
measures how well an instance represents all other input patterns and is therefore nec-
essary in order to preserve the underlying distribution D [15].
Many active learning strategies use either informativeness in the form of query-by-
committee [28, 7, 13] or uncertainty sampling [17, 16, 30, 2] or representativeness through
clustering methods [21, 8] or density measurements [34, 10]. Other active learning al-
gorithms combine both criteria either in an ad hoc approach [10, 11], risk minimization
[32] or min-max based active learning [15]. The term ad hoc refers to instantaneously
calculating the informativeness and/or representativeness of each sample isolated.
Additionally, there are also performance-based strategies that try to directly estimate
the accuracy increase of a classifier and choose samples accordingly [1].
Finally, there are adaptive learning algorithms designed to combine different strategies
and automatically determine the weighting between them, their core idea typically re-
volves around solving a Multi-armed bandit problem [14, 23, 5].

The landscape of active learning mainly consists of two subsets, pool-based active learn-
ing and on-line active learning. In the following we talk about them separately.
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2.1. Pool-based active learning

Figure 2.2: Schematic representation of the
components involved in pool-based
active learning. All unlabeled data
is stored in the unlabeled pool.
The query strategy then suggests
which sample to label next and
sends it to the oracle to receive
its label. The labeled sample then
gets added to labeled data and can
be used to train a supervised clas-
sifier. The combination of query
strategy and classifier is referred to
as active learner.

2.1. Pool-based active learning

Pool-based active learning works, as the name suggests, by accumulating all unlabeled
data inside one large pool/set and maintaining a ranking in which order the samples
are to be labeled. To make the notion of data accumulated in sets more rigorous we
continue by discussing some notation.

2.1.1. Preliminaries

Notation:
• Scalar: x, X
• Vector: x with entries xi
• Array/Tensor: X
• Function: X, Function
• Set: X

Suppose we are given N samples denoted as S = {x1,x2, ...,xN} that are divided into
L = {(x1, y1), (x2, y2), ..., (xL, yL)} a set of L labeled instances (the labeled pool) and
U = {xL+1,xL+2, ...,xN} a set of U = N − L unlabeled samples (the unlabeled pool),
where xn ∈ RD is a D-dimensional vector. We denote by Z the set of possible labels.
The N samples, and labels yl ∈ Z are independent and identically distributed (i.i.d.)
according to an underlying distribution D.

2.1.2. Components

All components that make up pool-based active learning are displayed in figure 2.2.
The general structure is as follows: All available, unlabeled data is stored in the unlabeled
pool U . Whenever an additional unlabeled sample should be labeled the query strategy
decides which sample out of the unlabeled pool gets labeled. This process is called
querying. The query strategy works by assigning every element of U an utility score and
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2.1. Pool-based active learning

outputs the best performing sample. As such the query strategy consists of a protocol to
calculate an utility score and whether this measure is to min- or maximize, see algorithm
1 for an example query strategy that chooses the sample with the smallest feature/input
vector. Often this protocol involves the classifier used to solve the classification problem
and we refer to the active learner as the classifier combined with the query strategy.
After a sample to label is chosen it gets sent to the oracle. We denote the oracle as the
instance that given the unlabeled sample provides us with the corresponding label. This
task often involves a human expert. As a function the oracle is given by

O ∶ RD → Z

xn → yn = O(xn) w.r.t. distribution D.

Afterwards the, now labeled, sample is added to the labeled pool L and the labeled pool
can be used to train the classifier. We repeat this process until U is empty or some
different criterion is fulfilled, e.g., the classifier reaches the required loss. This process is
summarized in algorithm 2.

Before moving on we quickly mention the terms label and sample complexity.
Label and sample complexity describe the number of labeled samples (= number of
labels) and the number of all samples (so with and without label) necessary to train the
classifier to some point. For example, randomly choosing the samples to label gives an
equal label and sample complexity as opposed to a query strategy as defined above where
the sample complexity is N after the first query (since the query strategy needs access
to all unlabeled data immediately). Anyhow, we hope to improve label complexity.

Algorithm 1 Example of a query strategy

Input: Unlabeled samples U
Output: xs ∈ U # xs(tar)

1: U (xu) ∶= ∣∣xu∣∣2 ∀xu ∈ U # ∣∣.∣∣2 denotes Euclidean norm
2: xs = arg min

xu∈U
U (xu)

3: return xs

2.1.3. The major flaw: Sampling bias

The approach as described above will have serious flaws, e.g., while randomly choos-
ing the samples to label will preserve the distribution D from where the samples were
drawn, introducing a query strategy will lead to samples that are drawn from a distri-
bution induced by the query strategy. This might lead to a poor generalization ability
of the model, since it no longer takes the distribution D into account [32]. We call this
phenomenon sampling bias, i.e., the empirical probability density function (pdf) D̂ esti-
mated using the queried samples strongly deviates from the unknown, true pdf D.
This leads to the following, related problem - the labeled samples influence the choice
of the next possible candidates for labeling. This means that when starting the active

8 CHAPTER 2. ACTIVE LEARNING



2.1. Pool-based active learning

Algorithm 2 Pool-based active learning

Input: Classifier F trained on L, unlabeled samples U , labeled samples L
Output: F with L(F ) < δ

1: while U ≠ {} and L(F ) > δ do
2: xs = Q (F, U , L)
3: ys = O(xs)
4: L, U = L ∪ {(xs, ys)}, U ∖xs
5: retrain F on L
6: update L(F )
7: end while
8: return F

Figure 2.3.: Demonstrating the negative effect of starting an exploit heavy query strategy with
limited labels initially. We compare either drawing samples randomly (RS) to
querying the samples with highest entropy (US, section 2.1.4.2). The different plots
RS2, US2 and US3 have as initial data two,two and three samples, respectively
with every class being present at most once. The plots are obtained using a linear
SVM on the Iris dataset and averaged over 500 runs.

learner with few labeled samples the initial sample bias will lead potentially to an even
bigger bias [15]. This is demonstrated in figure 2.3 using an exploit-heavy query strategy
such as uncertainty sampling, see section 2.1.4.2, with very few labeled samples initially.
We say a query strategy is exploit-heavy if it is prone to induce sampling bias. The
term exploit-heavy stems from the dilemma of balancing exploration (expanding your
knowledge) versus exploitation (using your knowledge).
The key observation in this section is that sampling introduces bias.

CHAPTER 2. ACTIVE LEARNING 9



2.1. Pool-based active learning

2.1.4. Query strategies

As already mentioned the query strategy consists of an utility score and whether this
score is to min- or maximize. Obviously there are arbitrarily many such choices and in
the following we discuss some possible query strategies that, based on some superficial
intuition, are assumed to improve label complexity. For completeness we note that we
refer to all query strategies in this section as base query strategies for reasons that are
not yet obvious.

2.1.4.1. Random sampling (RS)

This query strategy chooses a sample xu ∈ U to label at random. Sampling randomly
corresponds to not having a strategy and is therefore our baseline. We also refer to
sampling randomly as passive learning in contrast to active learning (actively following
a strategy when choosing the samples to label). The goal is to reach a better performing
classifier when choosing samples to label according to some policy as opposed to choosing
randomly given some fixed number of labels in both cases.

2.1.4.2. Uncertainty sampling (US)

US is supposed to query informative samples. It defines an informative sample through
the classifier’s confidence in the sample’s label prediction.
Intuition dictates that the classifier is the least certain for samples close to a decision
boundary. Obviously those are also the samples with the most information in the sense
that obtaining the labels of the samples that are closest to the decision boundary lead to
the highest “resolution” of the true, unknown decision boundary. E.g., you may recall
the introductory example of classifying dots on a line with an unknown label transition
point.
So, we are interested in the points where the classifier is most uncertain of. There are dif-
ferent measures of assigning a discrete probability distribution an amount of uncertainty.
Four possible choices are

• least confident: S(pxi) = 1 −max
z∈Z

pxi,z,

• gini: S(pxi) = ∑
z∈Z

pxi,z(1 − pxi,z),

• entropy: S(pxi) = ∑
z∈Z

−pxi,z lnpxi,z,

• margin: S(pxi) = max
1
pxi −max

2
pxi # max

n
a is the n-th largest element of a

where pxi is the vector of class membership probabilities (this vector represents a discrete
probability distribution or probability mass function) belonging to sample xi to be in
one of the possible classes. Remember that Z is the set of all possible labels. If not
noted differently, we use S as entropy.

10 CHAPTER 2. ACTIVE LEARNING



2.1. Pool-based active learning
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Figure 2.4.: Different uncertainty measures in binary classification, hence p1 + p2 = 1. We
find p1 = p2 = 0.5 by maximizing all measures but “margin” and by minimizing
“margin”. In binary classification ordering samples after uncertainty will result
in the same ranking for all uncertainty measures, in that sense all measures are
equivalent.

Therefore, we need a classifier that is able to predict class membership probabilities. We
denote this function by P and let

pxi ∶= P(F,xi). (2.1)

Every sample belongs to one of the possible classes and therefore it holds

∑
z∈Z

pxi,z = 1 (2.2)

where pxi,z is the probability, predicted by classifier F, that sample xi has label yi = z.
All measures but “margin” share the property of being zero when the classifier is most
certain and increase as uncertainty increases. Hence, we choose the sample that mini-
mizes “margin” and maximizes else.
The strategy is summarized in algorithm 3.

2.1.4.3. Representative sampling (ReS)

ReS, as the name suggests, queries representative samples. A sample is representative if
there are many other samples close (closeness through p-norm) in input space.
As already mentioned in section 2.1.3 simply sorting by heterogeneity, so by uncertainty,
has its drawbacks in terms of loosing information about the distribution from where the
samples were drawn initially.
One way of counteracting the influence of the query strategy on the distribution of drawn

CHAPTER 2. ACTIVE LEARNING 11



2.1. Pool-based active learning

Algorithm 3 Uncertainty sampling

Input: Classifier F, unlabeled samples U , labeled samples L
Parameters: S ∈ {least confident,gini,margin, entropy}
Output: xs ∈ U

1: train F on L
2: calculate class probabilities pxu∀xu ∈ U
3: if S is margin then
4: xs = arg min

xu∈U
S(pxu)

5: else
6: xs = arg max

xu∈U
S(pxu)

7: end if
8: return xs

samples, i.e., to get this distribution closer to the one that would emerge when choosing
samples randomly, is by introducing density measures or clustering methods.
When solely relying on a representative measure as a utility score, the idea is that the
classifier performs better if he first learns samples that are the most representative of all
other samples. So, we need a similarity measure and we say that two samples xi ∈ S and
xj ∈ S are similar if they are close in input space RD. So we choose a metric to quantify
“close”, e.g.,

• Manhattan: M(xi,xj) =
D

∑
d=1

∣xi,d − xj,d∣,

• Euclidean: M(xi,xj) =
√

D

∑
k=d

(xi,d − xj,d)2,

• Maximum: M(xi,xj) = max
d=1..D

∣xi,d − xj,d∣.

These metrics are all deduced from a p-norm with p = 1,2,∞ respectively. They are
displayed in figure 2.5.
We define the density of a sample xi in a given sample space A as

ρA(xi, ε) = ∑
xa∈A

M(xi,xa)≤ε

1

A
(2.3)

where A = ∑
xa∈A

1 is the number of samples in A and ε is a hyperparameter. In words -

what is the probability for a random sample xa ∈ A to not have a greater distance than
ε to xi.

When computing ρ for more than one sample in an iterative labeling process it is bene-
ficial to first compute the 2-point distance matrix M where

Mi,j ∶= M(xi,xj) (2.4)

12 CHAPTER 2. ACTIVE LEARNING



2.1. Pool-based active learning
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Figure 2.5.: Unit circle for different p-norm in two dimensions [25].

is a symmetric matrix with zero as diagonal elements.
We are mostly interested in ρS as it reflects the overall representativeness of a sample and
ρL as the ability of a sample to represent the labeled pool. Consequently, two promising
query strategies are to maximize ρS to find representative samples or to minimize ρL to
reduce the redundancy in the training data.
Finally, representative sampling is condensed in algorithm 4.
Remark: ρS → D as N →∞, ε→ 0 if samples are drawn i.i.d.

Algorithm 4 Representative sampling

Input: Unlabeled samples U , labeled samples L
Parameters: R ∈ {L,U ,S}, ε > 0, g ∈ {high, low},metric M
Output: xs ∈ U

1: calculate and store Mn,n′ = M(xn,xn′) ∀n,n′ = 1→ N
2: calculate ρR(xu) = ∑

xr∈R
Mu,r≤ε

1 ∀xu ∈ U # normalisation by 1
R is optional

3: if g is high then
4: xs = arg max

xu∈U
ρR(xu)

5: else
6: xs = arg min

xu∈U
ρR(xu)

7: end if
8: return xs

CHAPTER 2. ACTIVE LEARNING 13



2.1. Pool-based active learning

2.1.4.4. Mean distance sampling (MdS)

MdS is similar to ReS and also tries to find representative samples. A sample is repre-
sentative if the average distance to another sample is small.
It is intuitive to assume that, if a sample is surrounded by an above average number of
close-by samples, i.e., if it is in a high density region of data space then it will have a
lower average distance w.r.t. all data points than a sample in a low density region of
data space.
Note that to query samples in a high density region we look for samples with a low
average distance.
MdS is summarized in algorithm 5.

Algorithm 5 Mean distance sampling

Input: Unlabeled samples U , labeled samples L
Parameters: R ∈ {L,U ,S}, g ∈ {high, low},metric M
Output: xs ∈ U

1: calculate and store Mn,n′ = M(xn,xn′) ∀n,n′ = 1→ N
2: calculate N = ∑

xj∈R
1

3: calculate mean distances d where dxu = 1
R ∑
xr∈R

Mu,r ∀xu ∈ U

4: if g is high then
5: xs = arg max

xu∈U
dxu

6: else
7: xs = arg min

xu∈U
dxu

8: end if
9: return xs

2.1.4.5. Nearest neighbour criterion (NNC)

NNC is designed to find representative samples and is taken from [35].
It finds representative samples by introducing a measure that quantifies how well the
unlabeled pool is represented by the labeled pool - the lower the better. The query
strategy then chooses the sample that minimizes this measure after the sample has been
shifted from the unlabeled pool to the labeled pool.
We start by defining the total nearest neighbour distance as

N(L,U) ∶= ∑
xu∈U

min
xl∈L

∣∣xu −xl∣∣2 (2.5)

where ∣∣.∣∣2 denotes the Euclidean norm.
The function N is a direct measure of dissimilarity between the labeled and unlabeled
pool. It obtains a small value when every unlabeled point has a labeled samples close-by
and vanishes when the labeled pool contains every point of the unlabeled pool. This
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justifies its interpretation as a measure of (dis)similarity. The lower the N, the more
representative is the labeled pool of the unlabeled pool.
Therefore, the query strategy chooses the sample such that N reaches a minimum after
the sample has shifted from the unlabeled to the labeled pool, i.e., such that after having
added one sample to the labeled pool it is now most representative of the remaining
unlabeled pool. This means the criterion is given by

xs = arg min
xu∈U

N(L ∪ {xu},U ∖ {xu}). (2.6)

Note that, NNC rearranges the order in which the samples are to be labeled and this
order does not depend on any labels. Hence, NNC delivers a static permutation of the
unlabeled samples that can be pre-computed. This is in contrast to, e.g., US.

2.1.4.6. Density weighted uncertainty sampling (DwUS)

DwUS is meant to query informative and representative samples and is adopted from
[27]. We find informative samples through US, see section 2.1.4.2. For representative
samples we use a new approach that defines a representative sample as a sample similar
to a cluster centroid.
In more details, we find the representative samples in the following way - first, given a
dataset we assume that the cluster centroids that result from K-Means clustering are
its most representative points (note that these points do not have to be part of the
dataset). Taking into consideration that a set of cluster centroids are by definition the
set of points that when every sample in the dataset is represented by the closest point
out of the set of cluster centroids, then this set of cluster centroids minimizes the mean
Euclidean distance between a point out of the dataset and its representation. This makes
the assumption quite natural. Next, we say a sample is representative if it is similar to
a cluster centroid. The similarity of two data points is defined as a normalized kernel
function between the data points

K̂ (xi,xj) ∶=
K(xi,xj)√

K(xi,xi)K(xj ,xj)
(2.7)

where K is an arbitrary kernel function.
Figure 2.6 shows the value of different kernel functions in a two-dimensional input space
where the reference point is the cross in the center of the sub figures.
Then, the utility score that this query strategy maximizes is the product of an uncer-
tainty measure and a similarity measure.
Algorithm 6 summarizes the query strategy DwUS.

2.1.4.7. Cluster margin sampling (CMS)

CMS is designed to query informative samples. It defines an informative sample as a
sample close to a decision boundary but, in contrast to US, it does not require any
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Figure 2.6.: Comparison of different (normalised) kernel functions that are possible candidates
to quantify the similarity between two points. A similarity of one corresponds
to perfectly similar while a similarity of zero corresponds to the two points being
dissimilar. For reference, one point is fixed to the cross in the center.

Algorithm 6 Density weighted uncertainty sampling

Input: Classifier F, unlabeled samples U , labeled samples L
Parameters: S ∈ {least confident,gini, entropy}

kernel function K ∈ {chi2, linear,poly, rbf, laplacian, sigmoid}
Output: xs ∈ U

1: set number of centroids K to the number of unique labels Z
2: calculate K centroid locations C using K-Means on U where Ck stores a centroid

location ∀k = 1→K
3: calculate b where bxu ∈ {1, ..,K} is the cluster label that K-Means predicts for sample
xu ∈ U

4: compute the similarity d for all unlabeled samples to their cluster center by

dxu =
K(xu,Cbxu )√

K(xu,xu)
√

K(Cbxu ,Cbxu )
∀xu ∈ U

5: obtain entropy s where sxu = S(pxu) ∀xu ∈ U
6: xs = arg max

xu∈U
sxudxu

7: return xs
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classifier. Instead, CMS relies on K-Means clustering.
To make this intuitive, we assume that samples with identical labels have similar features,
then different classes make up different clusters in input space. Further we assume that
not only does every cluster consist of one class but also that every class has one unique
cluster. Since every cluster is characterized by its cluster centroid this means a sample
that is equally close (Euclidean distance) to two cluster centroids shares features with
both classes. As the sample shares features with both classes it is close to the decision
boundary between the two classes.
Thus we use a K-Means clustering algorithm on, for example, all available data points
to find cluster centroids. Due to our assumptions the number of cluster centroids is
the number of classes. Then, we query the unlabeled sample that is equally close to its
two nearest centroids. By assumption, this sample is close to a decision boundary and
thereby informative.
The algorithm is outlined in pseudo code in 7.

Algorithm 7 Cluster margin sampling

Input: Unlabeled samples U , labeled samples L
Parameters: R ∈ {L,U ,S}
Output: xs ∈ U

1: set number of centroids K to the number of unique labels Z
2: calculate K centroid locations using K-Means on R
3: calculate the distance to every centroid dxu ∀xu ∈ U
4: xs = arg min

xu∈U
(min

2
dxu −min

1
dxu) # min

n
a is the n-th smallest element of a

5: return xs

2.1.4.8. Query by committee (QbC)

QbC uses different classifiers to find informative samples. We say that samples close to
the decision boundary are informative. Samples close to a decision boundary are most
difficult to classify. Then, for such a sample a small change in the classifier will lead to
the largest change in the classifier’s label prediction. Evidently, the sample on which
different classifiers deliver the most disagreement in the label prediction is the sample
which is closest to a decision boundary.
Accordingly, the notion is that a committee of different classifiers predicts class labels
or class membership probabilities and the sample on which the committee’s prediction
disagrees the most is queried.
To quantify the disagreement two measures are used - vote entropy and Kullback-Leibler
divergence. To compute vote entropy the class assignments of every classifier are suf-
ficient whereas for Kullback-Leibler divergence the class probability distributions are
required.
To compute vote entropy we first gather the label prediction of all classifiers for all
samples. Then, we use those predictions to estimate the class membership probability
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vector of each sample. We query the sample with the highest entropy in its estimated
class membership probability vector.
When using Kullback-Leibler divergence, we first gather the class membership probabil-
ities predicted by all classifiers and for each sample. Then, for each sample we calculate
the mean class membership probability vector by averaging over the classifiers. We
query the sample where, on average, the classifier’s predicted class membership proba-
bility vector deviates the most from the mean class membership probability vector. We
use Kullback-Leibler divergence to quantify the deviation.
The query by committee sampling is outlined in algorithm 8 using vote entropy, and in
algorithm 9 using Kullback-Leibler divergence.
Finally, we note that the classifiers do not necessarily have to be different if at each query
iteration the training pool of every classifier is drawn with replacement independently
from the available labeled data.

Digression: Understanding Kullback-Leibler divergence

Kullback-Leibler divergence is also known as relative entropy and quantifies the dif-
ference of two probability distributions. It is defined as

KL(V,W) ∶=∑
x∈X

V(x) log
V(x)
W(x) (2.8)

for discrete probability distributions V and W of the random variable X.
Entropy quantifies the amount of information in a probability distribution. Let’s
say we have a random variable X that takes on the values a, b, c with probabilities
W : 1/2,1/4,1/4 [31]. To trivially store the raw data of every toss we need two bits,
but the entropy or information of W is 1.5 bits. That is because there exists an
encoding that lets us store the raw data using only 1.5 bits on average. Here it is
called Huffman encoding and it is given by

a→ 0, b→ 10 and c→ 11. (2.9)

Now consider a second probability distribution V : 1/4,1/4,1/2. How many bits would
we need to store its raw data on average using the ideal encoding based on W ?

SW ∶= 1

4
1 + 1

4
2 + 1

2
2 =∑

x∈X
−V(x) log2 W(x) = 1.75 (2.10)

Kullback-Leibler divergence gives the number of bits wasted when encoding V using
the ideal encoding of W compared to its ideal encoding:

KL(V,W) = SW − S(V)
=∑
x∈X

−V(x) log2 W(x) −∑
x∈X

−V(x) log2 V(x)

= 1.75 − 1.5 = 0.25 (bits)

(2.11)
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Algorithm 8 Query by committee - vote entropy

Input: Unlabeled samples U , labeled samples L, committee F
Output: xs ∈ U

1: let NF be the number of committee members
2: train F on L
3: obtain the committee votes Ṽ where ṼnF ,xu,z is either 0 or 1 if committee member
nF predicts class label z for sample xu ∀xu ∈ U , nF = 1→ NF , z ∈ Z

4: sum up the member votes Vxu,z =
NF
∑

nF =1
ṼnF ,xu,z

5: turn into probabilities p′xu =
V xu

NF
6: xs = arg max

xu∈U
S(p′xu)

7: return xs

Algorithm 9 Query by committee - Kullback-Leibler divergence

Input: Unlabeled samples U , labeled samples L, committee F
Output: xs ∈ U

1: set NF as number of committee members
2: train F on L
3: obtain the committee votes Ṽ where ṼnF ,xu,z is the of committee member nF pre-

dicted probability that sample xu has label z ∀xu ∈ U , nF = 1→ NF , z ∈ Z
4: calculate mean distribution consensus Cxu,z = 1

NF

NF
∑

nF =1
ṼnF ,xu,z

5: compute K where

KnF ,xu = ∑
z∈Z

ṼnF ,xu,z log
ṼnF ,xu,z

Cxu,z

6: take the average Kxu ← 1
NF

NF
∑

nF =1
KnF ,xu

7: xs = arg max
xu∈U

Kxu

8: return xs
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2.1.4.9. Fisher information sampling (FIS)

FIS is designed to query informative samples. It defines an informative sample as a
sample that leads to a high certainty in the model’s (classifier’s) parameters.
The inverse Fisher information Q−1 (see eq. (2.12)) lower bounds the covariance matrix
of the estimated model parameter θ. Consequently, the product of the variances corre-
sponding to the individual model parameters is lower bound by (det(Q))−1 [18].
Then, the query strategy chooses the samples that lead to a large determinant in order
to reduce the variance or uncertainty of the model parameters. The Fisher information
matrix is given by

Q = Ex,y [(
∂L
∂θ

)(∂L
∂θ

)
T

] ≈ 1

L
∑
xl∈L

Ey [(
∂L
∂θ

)(∂L
∂θ

)
T

]∝ ∑
xl∈L

Ey [(
∂L
∂θ

)(∂L
∂θ

)
T

] (2.12)

where we can use probabilities provided by a classifier to compute the expectation over
the label assignment. Then, the active selection becomes

xs = arg max
xu∈U

det

⎧⎪⎪⎨⎪⎪⎩
∑

xl∈(L∪{xu})
Ey [(

∂L
∂θ

)(∂L
∂θ

)
T

]
⎫⎪⎪⎬⎪⎪⎭
. (2.13)

Computing this quantity can be, depending on the loss-function, highly non-trivial, so
let’s make this more explicit and continue with logistic regression and binary classifica-
tion (y ∈ {1,−1}) as done in the paper [18]. The loss of logistic regression is given by, we
will talk about this in more detail in section 3.1,

L ∶= − ln J(x, y,w) = − lnσ(ywTx) (2.14)

where we have padded the input x → x = (1, x1, x2, ..)T to account for the intercept or
bias term in w and σ(x) = 1

1+exp(−x) . Plugging eq. (2.14) into eq. (2.12)(with θ → w
and L = − ln J) leads to

Qi,j ≈ ∑
xl∈L

Ey [
∂ ln J
∂wi

∂ ln J
∂wj

] (2.15)

= ∑
xl∈L

Ey [σ(−ywTxl)2y2xixj] (2.16)

= ∑
xl∈L

Ey [σ(−ywTxl)2xixj] (2.17)

= ∑
xl∈L

(σ(wTxl)σ(−wTxl)2xixj + σ(−wTxl)σ(+wTxl)2xixj) (2.18)

= ∑
xl∈L

(σ(wTxl) + σ(−wTxl))σ(+wTxl)σ(−wTxl)xixj (2.19)

= ∑
xl∈L

σ(+wTxl)σ(−wTxl)xixj (2.20)

= ∑
xl∈L

σ(wTxl)(1 − σ(wTxl))xixj (2.21)
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Figure 2.7.: The figure displays the classifier accuracy on test data as a function of the number
of labels. It shows that eq. (2.23) has inferior performance when using a SVM with
radial basis function kernel b) as opposed to a linear kernel function a). Dataset
is Iris and averaged over 100 runs.

where we use from eq. (2.16) to (2.17) that y ∈ {1,−1} → y2 = 1, and from eq.(2.17) to
(2.18) that P(y∣xl,w) = σ(ywTxl).
And then the active selection in eq. (2.13) for logistic regression is

xs = arg max
xu∈U

det{Q + σ(wTxu)(1 − σ(wTxu))xuxTu } . (2.22)

This explicit form for the active selection obviously is only valid for (binary) logistic
regression. From analogy we can update the expression (2.22) to apply to non-binary
classification leading to

xs = arg max
xu∈U

det{Q + Gini(pxu)xux
T
u } (2.23)

where pxu is the class probability mass function (see eq. (2.1)), and the Gini-function was
defined in chapter 2.1.4.2. It is straightforward to show that replacing wTx → K(w,x)
by an arbitrary kernel-function K leads to

xs = arg max
xu∈U

det{Q + Gini(pxu)(∇wK(w,xu))(∇wK(w,xu))T} . (2.24)

Unfortunately calculating the quantity in eq. (2.13) for more complex classifiers quickly
becomes intractable.
The implementation in code on github (see chapter 2.1.6) uses eq. (2.23) resulting in
subpar performance for classifiers with non-linear kernels. This can be seen in figure
2.7. It should be noted that FIS was (almost) always outperformed by simpler strategies
such as US and thus, did not prove useful.

2.1.4.10. Class balance sampling (CBS)

CBS neither queries informative nor representative samples, instead its idea is that
a classifier performs better if the samples used for training are balanced w.r.t. class
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membership, i.e., if in the training data the number of samples per class is equal for all
classes.
At each training iteration the query strategy estimates the following quantity for each
unlabeled sample xu ∈ U

U(xu) ∶= ∑
z∈Z

(1 − Nz

L
)pxu,z (2.25)

with Nz the number of samples with label z ∈ Z, L the total number of labeled samples
and pxu the class probabilities of sample xu. We refer to Nz

L as the class ratios. The
sample maximizing U is chosen to be queried next.
Figure 2.8 displays the quantity U in the case of binary classification, i.e., the class
probabilities and class ratios fulfill px,1 + px,2 = 1 ∀x and N1

L + N2

L = 1.

As an exception we look at an experimental plot immediately. Figure 2.9 compares class
balance sampling to random sampling using the Iris dataset and a linear SVM. The plot
is averaged over 1000 runs. We can nicely see the query strategy working as expected
in the sense that it balances the training pool during the training process. The problem
is that the core assumption seems to be flawed since the classifier trained on the more
balanced training data performs worse.
While this plot is one of the more dramatic examples, the general scheme of class balance
sampling not performing well continues throughout most datasets. We conclude that it
might be useful as part of a committee of query strategies but not stand-alone.

2.1.4.11. Expected error reduction (EER)

EER, again, neither queries informative nor representative samples but is aimed to di-
rectly increase the classifier’s performance. Therefore, it is referred to as a performance-
based model as opposed to based on informative- or representativeness [1].
The idea is to add an unlabeled sample with every possible class label to the labeled
pool and then, retrain the classifier. Next, calculate the uncertainty of every sample in
the remaining unlabeled pool. We choose the sample in the query that minimizes the
expected uncertainty in the predicted class membership probability vector of all remain-
ing, unlabeled samples. The expectation over the label distribution of the chosen sample
is done using the predicted class membership probability vector of the classifier. In that
sense, we choose the sample that is the most likely to give us the highest certainty in
the label prediction of the remaining samples in the unlabeled pool, and consequently,
have the highest probability to correctly predict their respective labels.
We start by extending the notation of predicted class probabilities to include the option
of varying the training samples used to fit the classifier that predicts the class probabil-
ities. This leads to

pxi(A) ∶= P(FA,xi) (2.26)

where FA refers to the classifier trained on the (labeled) samples in A.
So, pxi,z(L) is the predicted probability, computed by the classifier F trained on L, that
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Figure 2.8.: Plot of the utility score U, see eq. (2.25), as a function of the class probability
and class ratio in the case of binary classification. Remember that it then holds
px,1 + px,2 = 1 ∀x and N1

L
+ N2

L
= 1. Class balance sampling chooses the sample

to be queried next that maximizes U, since the higher the U the more likely the
sample is to balance the labeled pool.
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Figure 2.9.: Comparing class balance sampling and random sampling using a linear SVM on
the Iris dataset. The left plot shows class balance sampling performing worse
compared to random sampling, despite it working properly as indicated by the
right plot. The y-axis in the right plot is to be understood as the entropy of class
ratios. Averaged over 1000 runs.

sample xi has the class label z ∈ Z. This allows us to write expected error reduction as

xs = arg min
xu∈U

⎛
⎝∑z∈Z

pxu,z(L) ∑
xu′∈(U∖xu)

S(pxu′(L ∪ {(xu, z)}))
⎞
⎠

(2.27)

with S an uncertainty measure that increases as uncertainty increases, e.g., entropy.
EER is summarized in algorithm 10.
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Algorithm 10 Expected error reduction

Input: Classifier F, unlabeled samples U , labeled samples L
Parameters: S ∈ {least confident,gini, entropy}
Output: xs ∈ U

1: train F on L
2: calculate class probabilities pxu ∀xu ∈ U
3: for xu in U do
4: for z in Z do
5: train F on L ∪ {(xu, z)}
6: calculate posterior class probabilities p̃xu′ ∀xu′ ∈ (U ∖xu)
7: sum up the posterior uncertainty of all remaining unlabeled samples

s̃z,xu = ∑
xu′∈(U∖xu)

S(p̃xu′ )

8: end for
9: compute the expected uncertainty sxu = pxu s̃xu

10: end for
11: xs = arg min

xu∈U
sxu

12: return xs
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2.1.5. Combining query strategies

We may want to choose a sample based on several criteria. E.g., we may want to query
an informative and representative sample. In fact in most cases, it is beneficial to use
more than one criterion/query strategy to decide which samples to label. This section
is designated to describing methods that combine an arbitrary number of the query
strategies from the previous section. We refer to the query strategies of the previous
section as base query strategies. This modular approach allows us to mix query strategies
together freely. Doing so helps us to overcome the previously mentioned sampling bias
and will reduce variance, as we will see later, and thus lead to a more robust query
strategy.
First, we will introduce a trivial way (RankS) of combining multiple base query strategies
which weighs every query strategy always equal. Then, we discuss two more query
strategies (ALBL and DEAL) that both combine multiple base query strategies but, in
contrast to RankS, are able to automatically put more emphasis on the, seemingly, more
important base query strategies.

2.1.5.1. Rank sampling (RankS)

The most straightforward way of combining base query strategies. RankS chooses a sam-
ple that performs well in multiple query strategies. Every base query strategy computes
the ranks of all unlabeled samples. The ranking of a query strategy goes from one ,for
the best performing, to the number of unlabeled samples. E.g., consider an unlabeled
pool with five samples, so U = 5. Then, the rank of the sample that the query strategy
proposes first, is one. After removing the sample with rank one, the rank of the sample
that the query strategy proposes then, is two. We continue till there is only one sample
left in the unlabeled pool, and the rank of this sample is five.
The sample with the best combined ranking is queried. The summation of different
hierarchies is performed in a linear or exponential way.
Both methods are outlined in detail in algorithm 11.

2.1.5.2. Active Learning by Learning (ALBL)

ALBL is a more advanced way of combining base query strategies. In contrast to RankS,
the weighting of different query strategies is no longer constant and equal, but instead,
it is allowed to dynamically change during the learning process. The goal is to induce a
weight shift during learning towards the most promising query strategies.
This approach is based on the multi-armed bandit problem (MAB). Therefore, we start
by introducing the MAB problem and discuss one general solution, called Thompson
Sampling [26].
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Algorithm 11 Rank sampling

Input: committee of query strategies Q = (Q1, ..,QNQ)
T

Parameter: method g ∈ {linear, exponential}, α = 0.1
Output: xs ∈ U

1: let NQ be the number of query strategies in Q
2: get ranking R where Rxu,nQ is the rank of sample xu in the query of QnQ ∀xu ∈
U , nQ = 1→ NQ

3: if v is linear then

4: Rxu ←
NQ

∑
nQ=1

Rxu,nQ

5: else if v is exponential then

6: Rxu ←
NQ

∑
nQ=1

− exp{−αRxu,nQ}

7: end if
8: s = arg min

xu∈U
Rxu

9: return xs

Digression: MAB and Thompson Sampling

A one-armed bandit is a rather famous slot machine that casinos still use to “steal”
their clients money. A multi-armed bandit is a one-armed bandit with multiple levers
that can be pulled. The colorful name of our problem is derived from the dilemma
a player faces after he sits down at such a machine. Every arm or lever produces
a random reward i.i.d. drawn from an underlying distribution. Every arm has its
own, to the player unknown distribution. The goal of the player is to maximize his
reward given a limited budget. The task is to find a successful scheme that properly
balances exploring the different arms and exploiting the acquired knowledge over the
distributions.
For better understanding consider the Bernoulli Bandit as an example.
A Bernoulli Bandit is a slot machine whose arms either produce a reward of one
with a certain probability or zero otherwise. Suppose there are K arms, and every
arm k ∈ {1, ...,K} produces a one with probability θk ∈ [0,1]. The player chooses a
beta-distributed prior belief of the form

Beta(θk, αk, βk) = cBeta θ
αk−1
k (1 − θk)βk−1 ∀k = 1→K, (2.28)

where cBeta is a constant necessary for normalization. He initially has no knowledge
and for the prior belief to be homogeneous, he chooses αk = βk = 1.
In the first iteration t = 1 the player applies an action x1 ∈ {1, ...,K} and receives
a reward r1 ∈ {0,1}. Having observed the reward he updates his prior according to
Bayes rule and having chosen beta-distributions, the update rules are of the simple
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form

(αk, βk)← { (αk, βk) if xt ≠ k
(αk, βk) + (rt,1 − rt) if xt = k

. (2.29)

Note that only the distributions of the selected action are changing.
We compare two possible strategies of the player: Either a greedy algorithm, or
Thompson Sampling.
In the greedy approach the player always chooses the action k whose distribution has
the highest mean reward θ̂k.
Thompson Sampling on the other hand draws randomly and uses the result as an
estimate for the mean reward θ̂k from the corresponding beta-distribution and simi-
larly frequently pulls the action with the highest mean reward.
Both algorithms are in pseudo code form in algorithm 12.

Finally, we define the per-period regret of an algorithm as the difference between
the mean reward of an optimal action as opposed to the mean reward of the action
picked by the algorithm. Therefore, a to zero converging regret also implies that the
algorithm always “finds” the optimal action. In figure 2.10 the per-period regret is
plotted versus the number of iterations for Thompson- and greedy sampling in case
of a three-armed Bernoulli Bandit. It is an average of 10.000 runs.

Algorithm 12 Greedy- and Thompson Sampling

1: for t = 1→ .. do
2: for k = 1→K do
3: if Greedy Samling then
4: θ̂k = αk

αk+βk = Beta(θk, αk, βk)
5: else if Thompson Sampling then
6: draw θ̂k from Beta(θk, αk, βk)
7: end if
8: end for
9: # select and apply action

10: xt = arg max
k=1→K

θ̂k

11: Apply xt and observe rt
12: # update distribution
13: (αxt , βxt)← (αxt + rt, βxt + 1 − rt)
14: end for

Having understood Thompson Sampling, we draw a similar analogy as in [14] where the
different arms (options to choose from) are query strategies. Each query strategy has a
certain weight associated to it. The higher the weight the more likely it is chosen and
after “pulling the arm”, we label the sample recommended by that base query strategy
and receive a reward. Next, we update the weights of the base query strategies that
recommended that sample, proportional to the reward. Then, we repeat this process.
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Figure 2.10.: Regret of Greedy- and Thompson sampling on the three-armed Bernoulli Bandit
[26].

Several arduous questions immediately arise - first, given a set of weights what is the
probability a certain arm is chosen? At this point, we only established that the higher
the weight of an arm the more likely it is chosen.
The second question is, what is the update rule concerning the weights going into the
next round? I.e., having observed the reward of the action proposed by the chosen arm
(the reward of labeling the sample proposed by the chosen query strategy), leads to what
weight update of the arms?
And finally, what is the reward function, i.e., how to quantify the information gain of
adding a certain sample to the labeled pool?

The answer to the first and second question is contained in paper [5] in the form of algo-
rithm Exp4.P. The answer to the latter question is given in paper [14] via “importance
weighted accuracy“ as an unbiased estimate of test accuracy.
Let’s start be discussing the used Exp4.P algorithm, a modification to the one given
in the paper [5]. The modified Exp4.P is given in algorithm 13. In the following, we
outline its key steps and the modification we here introduce. The algorithm 13 starts
by gathering the information which sample each arm proposes (code line 2). Next, the
algorithm converts the weights of every arm into a probability with which each arm is
chosen (code line 3), the higher the weight the more likely the arm is chosen. Then, given
the arm probabilities it draws randomly an arm and, by implication, also a sample to
label (code line 4,5). This is a key step which incorporates Thompson Sampling since we
draw randomly instead of simply choosing the arm with the highest probability/weight.
At this point, we temporarily pause the subroutine Exp4.P and continue in the main
algorithm of ALBL. It is given by algorithm 14 and starts off by using Exp4.P to choose
which sample to label, which is exactly where we paused the subroutine. The main
algorithm then receives the sample which is to be labeled and with which probability it
was chosen (code line 3 or 5). Then, the sample is labeled by the oracle and afterwards,
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it is added to the labeled pool (code line 9,10). The main algorithm of ALBL then
uses importance weighted accuracy to calculate the reward of adding the sample to the
labeled pool (code line 12) and sends it back to the subroutine. We continue where we
left off in the subroutine and use the received reward to update the weight of the arms
that proposed the chosen sample. The weight increases the more, the higher the reward.
There is also an exploration factor (v̂k = 1/pk(t)) which ensures that even unlikely arms
do not become completely irrelevant over time. Finally, Exp4.P can restart from the
beginning with updated arm weights and propose the next sample to label.

Now, the only missing piece is the reward function. The ideal reward would be a test
accuracy, but since the goal is to minimize the labels required to reach a certain accuracy,
it would be counter-intuitive to waste labels on a separate test pool. To elude this
problem, we use an unbiased estimate of the test accuracy called importance weighted
accuracy. It is defined as

I(F, τ) ∶= 1

NT

τ

∑
t=1

ωt⟦yut = F(xut)⟧ (2.30)

where ωt = (qxut (t))
−1, N is the total number of samples and T is the label budget. The

⟦⟧-notation is defined as

⟦A = B⟧ =
⎧⎪⎪⎨⎪⎪⎩

1 if A is equal to B,

0 else.
(2.31)

The key trick of importance weighted accuracy is weighing each summand in eq. (2.30)
by the inverse of the probability that the sample was chosen. To give this some intuition
we may think of the following - samples with a high probability of being chosen, are
chosen more frequently and hence, occur often in the training data and the classifier is
well fitted to them whereas unlikely samples are rare and are basically test data, so they
should contribute more when estimating a test accuracy.

Finally, we note the key distinction between the here discussed approach and the ap-
proach as outlined in paper [14]. We start by quoting a paragraph of the paper:
“Without loss of generality, assuming that the k-th algorithm ak is chosen by EXP4.P in
ALBL. Then, the query request of ak should be followed to query from Du. To accommo-
date the possibility that ak would want to make a probabilistic query, we introduce the
query vector Ψk(t) ∈ [0,1]nu , where its j-th component Ψk

j (t) indicates the preference
of the k-th algorithm on querying the label of xj ∈ Du in iteration t. The query vector
should represent a probability distribution to querying from Du; that is, ∑nuj=1 Ψk

j (t) = 1.
Deterministic active learning algorithms could simply return a degenerate query vector
that contains a single 1 on its most preferred instance, and 0 elsewhere.”[14]
ALBL expects query strategies to return a probability distribution that expresses the
query strategies preference to query every possible sample. However, all base query
strategies work by computing an objective function for every possible sample and query
the sample that performs best w.r.t that objective function. The distribution of a query
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strategy’s objective function differs between query strategies. Thereby, converting the
objective function’s score distribution into a probability distribution in a comparable
way is non-trivial. Which is the reason the implementation of ALBL as discussed here,
treats every query strategy as a deterministic query strategy, i.e., every query strategy
returns a probability distribution that is non-zero only for the query strategy’s most
desired sample.
This limitation is removed in the algorithm DEAL, discussed in the next chapter.

Algorithm 13 Modified Exp4.P generator for Active Learning by Learning

Parameters: δ > 0 (default: δ = 0.1), pmin ∈ [0,1/K] (default: pmin =
√

lnK
KT ),

label budget T , number of arms K,
committee of query strategies Q = (Q1, ..,QK)T

Initialization: Set wk(1) = 1 ∀k = 1→K

1: for t = 1→ T do
2: get advice vectors ξ1(t), ...,ξK(t) from Q where

ξkxu(t) =
⎧⎪⎪⎨⎪⎪⎩

1 if arm k queries sample xu

0 else
∀xu ∈ U , k = 1→K

3: set Wt =
K

∑
k=1

wk(t) and calculate

pk(t) ∶= (1 −Kpmin)w
k(t)
Wt

+ pmin ∀k = 1→K

4: set qxu(t) =
K

∑
k=1

pk(t)ξkxu(t) ∀xu ∈ U
5: draw sample xut with probability qxu(t)
6: receive reward rut
7: rescale reward rut ←

rut
qxut (t)

8: # adjust weights of arms that voted for drawn sample xut
9: ∀k = 1→K set

ŷk = ξkxut (t)rut

v̂k = 1

pk(t)

10: update weights according to

wk(t + 1) = wk(t) exp{pmin

2 (ŷk + v̂k
√

ln K
δ

KT )} ∀k = 1→K

11: end for

CHAPTER 2. ACTIVE LEARNING 31



2.1. Pool-based active learning

Algorithm 14 Active Learning by Learning

Input: classifier F, labeled samples L, unlabeled samples U , label budget T
Output: xs ∈ U

1: for t = 1→ T do
2: if t is 1 then
3: start modified Exp4.P and obtain xut ∈ U and qxut (t)
4: else
5: obtain xut ∈ U and qxut (t)
6: end if
7: store ωt = (qxut (t))

−1

8: return xs = xut
9: wait for Oracle, yut = O(xut)

10: move (xut , yut) from U to L
11: train F on L
12: calculate reward r = I(F, t)
13: send reward r back to modified Exp4.P
14: end for
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2.1.5.3. Dynamic Ensemble Active Learning (DEAL)

DEAL combines multiple base query strategies. DEAL generalises ALBL in the sense
that it, in contrast to ALBL, treats every query strategy as making a probabilistic query,
i.e., every query strategy proposes every possible sample with some probability.
This also implies that in DEAL the analogy shifts from a MAB problem to a MAB
problem with expert advice [23]. The NQ experts correspond to the ensemble of query
strategies and the K arms are unlabeled samples in the pool. Active learners based on
MAB with expert advice, e.g., [23] and [3] aim to learn the expert that recommends
the arm that leads to the highest reward. This has the crucial advantage that at every
iteration the weight of every query strategy can be updated since no matter which sample
is labeled, every query strategy proposed that sample with some probability and is able
to receive a share of the reward.

In the previous section we discussed the necessary restriction to interpreting every query
strategy as deterministic in ALBL. DEAL lifts this restriction by introducing a way of
converting a ranking hierarchy into a probability distribution via “exponential ranking
normalization”. This leads to the modification of Exp4.P (algorithm 13) leading to
RExp4 in algorithm 15. There, we use exponential ranking normalisation (code line 4)
and apply a Gibbs measure (code line 6) to convert the rankings of query strategies into
probability distributions.
We also drop the exploration term of Exp4.P in favor of a periodic weight reset (code
line 14 − 17) which serves a similar purpose.
We note that, the crucial part of multiple experts receiving a reward at a single iteration
is hidden in the pseudo-code. This happens in algorithm 15 in code line 13 which is
similar to the corresponding part in the code of Exp4.P (there: code line 9). This was
done on purpose to make the similarity between the two more clear. However, in Exp4.P
ξ is a perfectly sparse vector with only one one at the location of the preferred sample
of the query strategy. In RExp4 this same vector (after normalisation/after code line
8) represents a probability distribution with non-zero entropy. In fact, the amount of
entropy can be adjusted with the hyperparameters α,β.
Finally, we modify importance weighted accuracy as defined in eq. (2.30) leading to

I(F, τ) ∶= γ

T

τ

∑
t=1

ωt
Kt

⟦yut = F(xut)⟧ (2.32)

where Kt is the number of arms at iteration step t, γ ∈ (0,1] is the learning rate of
RExp4, ωt = (pxut (t))

−1 and T is the label budget. The difference between the two
equations is the factor 1/Kt and it ensures that eq. (2.32) is bounded from above by
one. Too see this, consider the following: Due to code line 8 in RExp4, it holds that

pxu(t) = (1 − γ)
NQ

∑
nQ=1

wnQ(t)ξnQxu (t)
Wt

+ γ

Kt
≥ γ

Kt
⇐⇒ γωt

Kt
≤ 1 ∀t ≤ T,xu ∈ U . (2.33)

Thus, I in eq. (2.32) is less than one for all τ ≤ T .
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Figure 2.11.: Plot of the test accuracy and standard deviation as a function of the number of
labels for a SVM with linear kernel on the Iris dataset. DEAL combines RS and
US as base query strategies. In the right figure we can observe DEAL having
lower standard deviation while performing comparably to US as seen in the left
figure. Averaged over 500 runs.

Then, DEAL is identical to ALBL, see algorithm 14, when substituting Exp4.P for
RExp4 and using the eq. (2.32) instead of eq. 2.30.

Remark: Variance reduction

One of the benefits of using an ensemble of query strategies via a bandit algorithm
such as ALBL and DEAL is hidden in the later appearing accuracy plots in chapter
4 - it is variance reduction. As an example, US often improves the performance gain
per label, but it does so only on average. While that is an important factor, it also
means that US occasionally (or even rarely) performs worse than RS. However, when
it does, it scores exceptionally poor leading to a high variance.
Giving the algorithm an alternative option when the most effective query strategy
fails greatly decreases variance, making the query strategy more reliable at almost
no cost. This can be seen in figure 2.11.
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Algorithm 15 RExp4 generator for Dynamic Ensemble Active Learning

Parameters: learning rate γ ∈ (0,1] (default: γ = 0.1), ∆T = 10, α = 0.1,
β = 10, committee of query strategies Q = (Q1, ..,QNQ)

T ,
label budget T , number of experts NQ

Initialization: Set wnQ(1) = 1 ∀nQ = 1→ NQ and τ = 1

1: for t = 1→ T do
2: set number of arms to number of unlabeled samples, so Kt = U
3: get ranking vectors ξ1(t), ...,ξNQ(t) from Q where ξ

nQ
xu (t) is the rank of sample

xu in the query of expert nQ ∀xu ∈ U , nQ = 1→ NQ

4: # apply exponential ranking normalization
5: ξ

nQ
xu (t)← − exp{−αξnQxu (t)} ∀xu ∈ U , nQ = 1→ NQ

6: # apply Gibbs measure
7: ξ

nQ
xu (t)← exp{−βξnQxu (t)} ∀xu ∈ U , nQ = 1→ NQ

8: normalize ξ
nQ
xu (t)←

ξ
nQ
xu (t)
∑

xu∈U
ξ
nQ
xu (t)

∀xu ∈ U , nQ = 1→ NQ

9: set Wt =
NQ

∑
nQ=1

wnQ(t) and ∀xu ∈ U calculate

pxu(t) = (1 − γ)
NQ

∑
nQ=1

w
nQ(t)ξ

nQ
xu (t)

Wt
+ γ
Kt

10: draw sample xut with probability pxu(t)
11: receive reward rut
12: rescale reward rut ←

rut
pxut (t)

13: # adjust weights of arms that voted for drawn sample xut
14: for nQ = 1→ NQ set

ŷnQ = rut ξ
nQ
xut

(t)

wnQ(t + 1) = wnQ(t) exp{ γ

Kt
ŷnQ}

15: τ ← τ + 1
16: # weight reset mechanism
17: if τ > ∆T then
18: set τ = 1 and ω(t + 1) = 1
19: end if
20: end for
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2.1.6. Implementation in code

To see an implementation in python of all query strategies of section 2.1.4 and 2.1.5 you
may check out my repository called “pool based active learning” on Github

https://github.com/SimiPixel/pool_based_active_learning .

You may also refer to the package “libact: Pool-based Active Learning in Python”
located at

https://github.com/ntucllab/libact .

This completes the discussion of pool-based active learning and we move on by discussing
on-line active learning.
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Figure 2.12: Schematic overview of on-line ac-
tive learning. For every observed,
unlabeled sample the query strat-
egy decides wether or not it
should receive a label. If not the
sample is deleted, and otherwise
it will be labeled by the oracle and
added to the labeled pool. The la-
beled pool is then used to train a
classifier.

2.2. On-line active learning

On-line active learning refers to active learning strategies where the query is shown a
sample and it decides whether or not to request the sample’s label. Its core motivation
is to make active learning more practical as pool-based approaches often fail to be
applicable in practice [19].
Some key advantages are, e.g., that it requires less storage space - the incoming sample
is either labeled and added to the training pool or it is deleted, there is no need for an
unlabeled sample pool. Furthermore following a simple queue strategy (“Last In - First
Out”) for incoming samples guarantees that the expert has to label the latest samples
first. This is beneficial assuming that the expert has a higher probability of correctly
labeling younger samples, i.e., the expert knows best about what happened right now,
not about what happened some time in the past.
On-line active learning can also be computational less demanding since a utility score is
only calculated for one sample and not an entire set of samples.

2.2.1. Components

In on-line active learning as soon as a new sample occurs, it is forwarded to the query
strategy. The query strategy then decides whether or not to label the sample. If it
declines, the sample is deleted. Otherwise the sample is send to the oracle for labeling.
Afterwards the labeled sample is added to the labeled pool and it is used to train a
classifier.
The scheme of on-line active learning is shown in figure 2.12.
Next, we introduce a popular structure of the query strategy in case of on-line active
learning.
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2.2.1.1. Importance weighted active learning (IWAL)

The query strategy decides whether or not to label the sample using a biased coin flip. By
adapting the coin bias the sample is more likely to be labeled if a utility score indicates
a high usefulness.
This approach follows the outline of “importance weighted active learning” [4, 1] and it
pursues nicely the spirit of exploration and exploitation. It reduces sampling bias, see
section 2.1.3, by not strictly following a certain policy but by introducing randomness.
The approach differs from pool-based active learning described in algorithm 2 in the
following sense. The query strategy in pool-based active learning chooses a sample out
of U , so it immediately needs access to all samples and hence has a sample complexity of n
as opposed to the query strategy of on-line active learning where the samples are drawn
randomly so its sample complexity equals the sample complexity of passive learning.
The difference to passive learning is that the query will sometimes decline the labeling
of samples, so its label complexity will be lower than the one of passive learning while
(hopefully) maintaining the same or better performance.
The query strategy of on-line active learning is described in algorithm 16 where threshold
δ is some constant. It is important to note that the coin bias should be between zero and
one. In algorithm 16 it is rewritten in a way that is consistent with pool-based active
learning.

Algorithm 16 Query strategy of on-line active learning

Input: Classifier F trained on L, unlabeled samples U , threshold δ
Output: xu ∈ U

1: for t = 1→ .. do
2: choose xut ∈ U randomly from U
3: determine coin bias b = B(xut) # B is discussed in section 2.2.2
4: b← b + δ # add threshold
5: c = Random(0,1) # random real number between zero and one
6: if c ≤ b then
7: break # leave for loop
8: end if
9: end for

10: return xut(, b) # we can return bias to use as sample weight

2.2.1.2. Weights

Up to this point we have not yet talked about sample weights but generally we could
also assign every labeled sample a weight ωl to respect when training the classifier so

(xl, yl)→ (xl, yl, ωl) ∀l = 1→ L. (2.34)

In the IWAL algorithm specified in [4] these weights are given by ωxut = 1/b where b
is the probability with which sample xut has been drawn and labeled at iteration t in
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algorithm 16.
Another possibility is to weigh each sample by

ωl =
ρS(xl)
ρL(xl)

∀l = 1→ L. (2.35)

This is well defined since ρL(xl) > 0 ∀xl ∈ L.

2.2.2. Query strategies

At this point we have established the basic structure of the query strategy in on-line
active learning: Every incoming sample gets assigned the probability of labeling the
sample, then we randomly draw whether or not the sample is labeled. In this section we
discuss in detail how to assign a sample its probability, whether it is labeled or not.
This corresponds to discussing the function B of algorithm 16.

2.2.2.1. Heterogeneity/Uncertainty sampling (US)

US makes it more likely that informative samples are labeled. As in section 2.1.4.2, we
define informative samples as samples close to a decision boundary. These samples have
high entropy in the class membership probability vector predicted by a classifier. The
following is in complete analogy to the active learner “PER-AL” described in survey [19]
where they use a Bernoulli random variable with parameter b

b+∣pt∣ with pt the distance
to the separating hyperplane and b a hyperparameter that adjusts the slope.

We know that entropy is bounded between zero and lnZ where Z is the number of classes.
Therefore, to determine the coin bias (high bias = more likely to request label) we can
use every function (ideally a monotonously increasing one) that fulfills the property

B ∶ [0, lnZ]→ [0,1] with Z the number of classes. (2.36)

Two possible choices are plotted in figure 2.13.
The scheme of US is summarized in algorithm 17.
The coin bias can be returned and used as inverse fitting weight with the intention of
reducing sampling bias.

2.2.2.2. Expected error reduction (EER)

EER chooses the sample that is the most likely to reduce the uncertainty in the label
prediction of unlabeled samples.
The difficult part in the case of on-line active learning is to determine which entropy
reduction corresponds to a good sample. In the pool-based approach we simply deter-
mined the probability weighted entropy reduction of the unlabeled pool when adding a
specific sample. The sample that leads to the highest reduction is queried. To reuse this
hierarchic sorting we introduce a small, ten sample large unlabeled gauge pool on which
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Figure 2.13.: Different functions to determine the coin bias or Bernoulli parameter of a sample
given the normalised entropy of its class probabilities. Normalisation is done
using the maximally possible entropy Smax = lnZ with Z the number of classes.
The coin bias is given by b

b+(1−s)
or 1

1+exp{−b(s−0.5)}
where s denotes the normalised

uncertainty, for a) and b) respectively.

Algorithm 17 On-line active learning using US

Input: Classifier F trained on L, xu ∈ U
Output: type string ∈ {yes,no}

1: let s be the entropy of sample xu, so s = S(pxu)
2: Normalise, s← s

lnZ
3: p = 1

1+exp{−b(s−0.5)} with b = 4

4: c = Random(0,1) # random real number between zero and one
5: if c ≤ p then
6: return yes, (1

p) # return 1/p to use as weight
7: else
8: return no
9: end if
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we base our decision.
Then the strategy is outlined in detail in algorithm 18 and following a weighted scheme
in algorithm 19.

Algorithm 18 On-line active learning using EER

Input: Classifier F trained on L, xs ∈ U , G ⊂ (U ∖ {xs})
Output: type string ∈ {yes,no}

1: G′ = G ∪ {xs}
2: calculate beforehand class probabilities pxg′∀xg′ ∈ G

′

3: # Z is number of classes, G number of samples in G
4: declare empty array S̃ of shape = (Z,G′ = G + 1)# G = 10
5: for xg′ in G′ do
6: Gt ∶= G′ ∖ {xg′}
7: for z in Z do
8: Lt = L ∪ {(xg′ , z)} and train F on extended Lt
9: calculate afterwards class probabilities p̃xgt∀xgt ∈ Gt

10: set S̃z,xg′ = ∑
xgt∈Gt

S(p̃xgt )

11: end for
12: end for
13: (weighted) entropy reduction S̃xg′ ← pxg′ S̃xg′ ∀xg′ ∈ G′

14: calculate mean and standard deviation µ and σ of S̃
15: p = 1

1+exp{−b S̃xs−µ
σ
}

with b = 4

16: c = Random(0,1) # random real number between zero and one
17: if c ≤ p then
18: return yes
19: else
20: return no
21: end if
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Algorithm 19 On-line active learning using EER with weights

Input: Classifier F trained on L, xs ∈ U , G ⊂ (U ∖ {xs}), vector of weights w
Output: type string ∈ {yes,no}, weight ω

1: if w is empty then
2: wl = 2 ∀l = 1→ L + 1
3: end if
4: initialize ω as mean of w
5: G′ = G ∪ {xs}
6: calculate beforehand class probabilities pxg′∀xg′ ∈ G

′

7: iterPoint
8: declare empty array S̃ of shape = (Z,G′ = G + 1)# G = 10
9: for xg′ in G′ do

10: Gt ∶= G′ ∖ {xg′}
11: wL+1 = ω
12: for z in Z do
13: Lt = L ∪ {(xg′ , z)} and train F on extended Lt w.r.t weights w
14: calculate afterwards class probabilities p̃xgt∀xgt ∈ Gt
15: set S̃z,xg′ = ∑

xgt∈Gt
S(p̃xgt )

16: end for
17: end for
18: (weighted) entropy reduction S̃xg′ ← pxg′ S̃xg′ ∀xg′ ∈ G′

19: calculate mean and standard deviation µ and σ of S̃
20: p = 1

1+exp{−b S̃xs−µ
σ
}

with b = 4

21: ω = 1/p
22: if ∣ω −wl+1∣ > ε then
23: goto iterPoint # e.g. ε = 0.01
24: end if
25: c = Random(0,1) # random real number between zero and one
26: if c ≤ p then
27: return yes, ω # return weight
28: else
29: return no
30: end if
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3. Auxiliary data source

As already mentioned, the ulterior motive is to label efficiently when obtaining the
training data necessary for a supervised classification. But since recruiting a human
expert as oracle is expensive, it may be a valid option to use some non-human entity as
oracle instead. This results in a cheaply obtainable and possibly large training dataset
with sub optimal label accuracy. The goal is to exploit such an auxiliary pool to solve
the general problem.
The setup is the following: We are given a (small) primary pool Dp with 100% accurate
labels and large auxiliary pool Da with < 100% accurate labels.
Possible approaches are to use the auxiliary pool for learning a good representation of
the primary pool using dictionary learning in a semi-supervised fashion. Alternatively,
one may allow the classifier to disregard some samples (out of the auxiliary pool) that
lead to a large contribution to the loss. Finally, we can try to correct the labels of the
auxiliary pool and use it afterwards as if it were perfectly labeled. The main focus of
this chapter will be label correction.
We investigate the solutions in the context of logistic regression due to its analytical
simplicity - thus first a reminder.

3.1. Reminder: Logistic regression

Logistic regression works, similarly to a SVM, by spanning a hyperplane in data space
and all samples on one side of this hyperplane are predicted to have a certain label
while all remaining data points have the opposite label. Thus, it only solves a binary
classification problem but obviously this can be extended to multi-class classification
via a one-vs-rest scheme. Finding the optimal hyperplane given a binary classification
problem can be formulated as maximizing the likelihood J, so

{ω∗, b∗} = arg max
ω,b

Ex,yJ(ω, b,x, y) (3.1)

where the likelihood is the probability that the classifier predicts the correct label y of
x and, it is given by

J(ω, b,x, y) ∶= P(y(ωTx + b)) (3.2)

where P assigns a probability that sample x has the correct label to the normal distance
from the hyperplane. Note that y ∈ {1,−1}. The usual choice is P(x) ∶= σ(x) = 1

1+exp{−x} .
Therefore, the probability goes to one if the sample is at a large distance from the
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hyperplane and on the correct side, it goes to zero when the sample is at a large distance
from the hyperplane and on the wrong side and it is 1/2 if it is exactly at the hyperplane.
It also has some nice analytical properties.
Since the underlying distribution is in general not known the averaging over the true
distribution is replaced by the product of individual likelihoods of a finite number of
samples, thus

Ex,yJ(ω, b,x, y)→ ∏
(xl,yl)∈L

σ(yl(ωTxl + b)). (3.3)

Finally, we take the natural logarithm of this expression and end up with the following

{ω∗, b∗} = arg max
ω,b

∑
(xl,yl)∈L

lnσ(ylωTxl + ylb). (3.4)

This is valid since the logarithm is a monotonously increasing function, i.e., arg max f⇔
arg max ln f. In the context of optimization this problem is often rewritten as minimizing
a loss function, so

{ω∗, b∗} =arg min
ω,b

∑
(xl,yl)∈L

L(ω, b,xl, yl) (3.5)

=arg min
ω,b

∑
(xl,yl)∈L

ln (1 + exp{−yl(ωTxl + b)}) (3.6)

and with our particular choice of σ, the function L is known as logistic loss.
We can solve this using gradient descent or Newton’s method in an iterative manner.
After initialization and using Newton’s method the update rule is given by

ω̃ ≡ ( ω
b

)← ( ω
b

) − αH−1∇ω,b
⎛
⎝ ∑
(xl,yl)∈L

ln J(ω, b,xl, yl)
⎞
⎠

(3.7)

where α is a learning rate and H is the Hessian matrix which is given by

Hd,d′ = Ex,y
∂ ln J(ω̃,x, y)
∂ω̃d∂ω̃d′

→ ∑
(xl,yl)∈L

∂ ln J(ω̃,xl, yl)
∂ω̃d∂ω̃d′

. (3.8)

Given our logistic loss function we can give the expressions for the gradient w.r.t the
classifier parameters and the Hessian matrix explicitly. It is helpful to first note that

∂tσ(f(t)) = σ(f(t))σ(−f(t))∂tf(t)⇒ ∂t lnσ(f(t)) = σ(−f(t))∂tf(t) (3.9)

where f is an at least once differentiable function and also note that

σ(x) + σ(−x) = 1 ∀x ∈ R. (3.10)
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3.1. Reminder: Logistic regression

Then, we can easily write down the gradient and Hessian matrix of the approximated
log-likelihood function

∂ωd
⎛
⎝ ∑
(xl,yl)∈L

ln J(ω, b,xl, yl)
⎞
⎠
= ∑
(xl,yl)∈L

σ(−yl(ωTxl + b))ylxl,d, (3.11)

∂b
⎛
⎝ ∑
(xl,yl)∈L

ln J(ω, b,xl, yl)
⎞
⎠
= ∑
(xl,yl)∈L

σ(−yl(ωTxl + b))yl, (3.12)

∂ωd∂ωd′
⎛
⎝ ∑
(xl,yl)∈L

ln J(ω, b,xl, yl)
⎞
⎠
= ∑
(xl,yl)∈L

−σ(yl(ωTxl + b))σ(−yl(ωTxl + b))xl,dxl,d′ ,

(3.13)

∂ωd∂b
⎛
⎝ ∑
(xl,yl)∈L

ln J(ω, b,xl, yl)
⎞
⎠
= ∑
(xl,yl)∈L

−σ(yl(ωTxl + b))σ(−yl(ωTxl + b))xl,d,

(3.14)

∂b∂b
⎛
⎝ ∑
(xl,yl)∈L

ln J(ω, b,xl, yl)
⎞
⎠
= ∑
(xl,yl)∈L

−σ(yl(ωTxl + b))σ(−yl(ωTxl + b)). (3.15)

If this would be the end of the story, then it would be impossible for logistic regression to
solve a radial problem such as in figure 4.3. We are still missing the most important trick
that is, replacing the projection ωTx by an arbitrary kernel function. The projection
ωTx we have used up to this point is called a linear kernel function. Figure 2.6 displays
other candidates.
One of the most important is the radial basis function kernel (rbf) defined as

Krbf(xi,xj) ≡ exp{−γ∣∣xi −xj ∣∣22} where ∣∣.∣∣2 denotes Euclidean norm and γ > 0.
(3.16)

Replacing ωTx→ Krbf(ω,x) yields the optimization problem

{ω∗, b∗} = arg max
ω,b

∑
(xl,yl)∈L

lnσ(yl(Krbf(ω,xl) + b)). (3.17)
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And for completeness we give the gradient and the elements of the Hessian matrix
required for optimization using Newton’s method explicitly

∂ωd
⎛
⎝ ∑
(xl,yl)∈L

lnσ(ξ)
⎞
⎠
= ∑
(xl,yl)∈L

σ(−ξ)(−2γ)ylKrbf(ω,xl)(ωd − xl,d), (3.18)

∂b
⎛
⎝ ∑
(xl,yl)∈L

lnσ(ξ)
⎞
⎠
= ∑
(xl,yl)∈L

σ(−ξ)yl, (3.19)

∂ωd∂ωd′
⎛
⎝ ∑
(xl,yl)∈L

lnσ(ξ)
⎞
⎠
= ∑
(xl,yl)∈L

σ(−ξ)(−2γ)2ylKrbf(ω,xl)(ωd − xl,d)(ωd′ − xl,d′)

(3.20)

(1 − ylKrbf(ω,xl)σ(ξ)) , (3.21)

∂ωd∂b
⎛
⎝ ∑
(xl,yl)∈L

lnσ(ξ)
⎞
⎠
= ∑
(xl,yl)∈L

σ(−ξ)σ(ξ)2γKrbf(ω,xl)(ωd − xl,d), (3.22)

∂b∂b
⎛
⎝ ∑
(xl,yl)∈L

lnσ(ξ)
⎞
⎠
= ∑
(xl,yl)∈L

−σ(−ξ)σ(ξ). (3.23)

where ξ ∶= yl(Krbf(ω,xl) + b).
This concludes our review of logistic regression and we return to the initial topic - the
utilization of the auxiliary pool.

3.2. Dictionary learning

We use the auxiliary pool to learn a sparse representation of our data while optimizing
the classifier’s loss based on this representation.
We define sparsity by example. Consider the following two Euclidean-unit-vectors

e1 = (1,0)T , e+ =
1√
2
(1,1)T . (3.24)

We say e1 is sparse and e+ is not sparse. We find (relatively) sparse vectors by regular-
izing the length of vectors in an optimisation problem through a p-norm with p < 2. To
see this, consider the following optimisation problem of finding Euclidean-unit-vectors

e∗ = arg min
e

(∣1 − ∣∣e∣∣2∣ + λ∣∣e∣∣p) (3.25)

with λ > 0. It is solved by e1 better than by e+ for p < 2 and reversed for p > 2. The
following table should make this clear:

p = 1 ∶ ∣∣e1∣∣1 = 1 ∣∣e+∣∣1 =
√

2 induces sparsity
p = 2 ∶ ∣∣e1∣∣2 = 1 ∣∣e+∣∣2 = 1 —

p =∞ ∶ ∣∣e1∣∣∞ = 1 ∣∣e+∣∣∞ = 1√
2

suppresses sparsity
(3.26)
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The visualisation of different p-norm-unit-circles in figure 2.5 may be helpful.
A sparse representation is desirable since sparse data is assumed to be better separable
in input space. This makes the data easier to classify.
The process of finding a sparse representation that is still able to (more or less) recon-
struct the original data is called dictionary learning. Its loss is given by

arg min
D∈D, x̃∈RK

⎛
⎜⎜
⎝
Ex

⎡⎢⎢⎢⎢⎢⎢⎣

1

2
∣∣x −Dx̃∣∣22
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

reconstruction error

⎤⎥⎥⎥⎥⎥⎥⎦

+ λ∣∣x̃∣∣1
⎞
⎟⎟
⎠

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
= L

. (3.27)

where
D = {D ∈ RD xK s.t. ∣∣Dk∣∣2 ≤ 1 ∀k = 1→K} and λ ≥ 0. (3.28)

Now we know what we mean by finding a sparse representation of our data. We then
use the data in this representation to optimize a classifier’s loss.
The classifier’s loss is given by logistic loss defined in the previous chapter (see eq.
(3.6)). The optimisation problem in such a semi-supervised dictionary learning is a
convex combination of the classifier’s loss and the loss of dictionary learning. It is given
by

arg min
ω̃∈RK+1,D∈D, x̃∈RK

((1 − µ)Ex,y [L(ω̃, y, x̃(x))] + µ(Ex [1

2
∣∣x −Dx̃∣∣22] + λ∣∣x̃∣∣1)) (3.29)

where µ ∈ [0,1] and λ ≥ 0. This optimisation problem can be solved by, e.g., block
coordinate gradient descent, however an easier implementation is to learn the dictionary
first and then the classifier, so

arg min
ω̃∈RK+1

Ex,y [L(ω̃, y, x̃∗(x))] (3.30)

where

x̃∗ = arg min
D∈D, x̃∈RK

(Ex [1

2
∣∣x −Dx̃∣∣22] + λ∣∣x̃∣∣1) . (3.31)

Approximating the expectation values over sample distribution allows us to utilize the
larger auxiliary pool for learning the dictionary since it does not require the auxiliary
pool’s faulty labels. Therefore, the final optimisation problem becomes

arg min
ω̃∈RK+1

∑
(xnp ,ynp)∈Dp

L(ω̃, ynp , x̃np = D∗Txnp) (3.32)

where

D∗ = arg min
D∈D, X̃∈RK xNa

⎛
⎝ ∑
xna∈Da

[1

2
∣∣xna −DX̃xna ∣∣

2
2] + λ∣∣X̃∣∣1

⎞
⎠

(3.33)

and where Na is the number of samples in the auxiliary pool, X̃xna is the new repre-
sentation of sample xna and ∣∣.∣∣1 is meant similar as a Frobenius norm but with p = 1
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instead of p = 2.
Finally, we note that this approach is conceptionally similar to transfer learning. The
field of transfer learning is about extracting and storing knowledge gained from solving
one problem and then transferring it to a related problem. Here, the initial problem is
learning a sparse representation and the transferred knowledge is the dictionary.

3.3. M-Logit

Since we now know how to utilize the auxiliary pool to learn a (hopefully) good repre-
sentation, we continue with what is called “M-Logit”. It is short for “Migratory-Logit”
and the approach is taken from [18].
The idea is to allow the classifier to put less emphasis on some samples from the auxiliary
pool based on the classifier’s ability to correctly label them.
To give credit to the paper we follow its notation closely, we denote Dp and Da as the
primary and auxiliary pool (just as before) with labels yp, ya, respectively. We consider
a binary classification problem, i.e., yp ∈ {1,−1} and ya ∈ {1,−1}. We use logistic regres-
sion as our classifier and start by splitting the likelihood into two parts, since their label
distribution differs

ln J(ω, b) = Ex,yp [lnσ(yp(ωTx + b))] +Ex,ya [lnσ(ya(ωTx + b))] (3.34)

where σ(t) = 1
1+exp{−t} and estimate the expectation values using our datasets, so

ln J(ω, b) ≈
Np

∑
np=1

lnσ(ypnp(ω
Txpnp + b)) +

Na

∑
na=1

lnσ(yana(ω
Txana + b)) (3.35)

where Np and Na are the number of samples in the primary and auxiliary pool.
Next, we introduce the auxiliary variable µ = (µ1, .., µNa)T whose purpose is to lessen
the effect of some samples from the auxiliary pool on the training process

ln J(ω, b,µ)→
Np

∑
np=1

lnσ(ypnp(ω
Txpnp + b)) +

Na

∑
na=1

lnσ(yana(ω
Txana + b + µna)). (3.36)

Thus, µna reflects the mismatch of (xana , yana) with Dp. The larger yanaµna is, the less
sensitive is Pr(yana ∣xana ,ω, b, µna) to a change in the model parameters ω, b.
This is desirable, since if (xana , y

a
na) is mismatched with Dp, the model parameters ω, b

cannot make both contributions
Np

∑
np=1

lnσ(ypnp(ωTx
p
np+b)) and lnσ(yana(ωTxana+b)) large

simultaneously. Evidently, choosing a large yanaµna will make the model parameters less
sensitive to (xana , y

a
na) and allow the model to concentrate the fitting on Dp.

Obviously we have to bound ∣∣µ∣∣ from above since otherwise it would render Da mute.
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This leads to the following optimization problem

max
ω,b,µ

ln J(ω, b,µ)

where
Na

∑
na=1

yanaµna ≤ CNa, C ≥ 0 (3.37)

and yanaµna ≥ 0 ∀na = 1→ Na.

The classifier that results from the optimization problem eq. (3.37) is called “Migratory-
Logit” (or “M-Logit”).
The hyperparameter C depends on the mismatch between Dp and Da, a good starting
value is C = 12NmNa where Nm is the estimated number of incorrectly labeled samples in
the auxiliary pool (for more information see [18]).
We can solve this problem in a block coordinate iterative process, first optimizing w.r.t.
ω, b while keeping µ constant and then optimizing w.r.t. µ while keeping ω, b constant.
To optimize w.r.t. ω, b we can deploy standard gradient descent with sufficiently small
step size. The solution to the problem (3.37) when the model parameters are kept
constant is given in analytical form in [18]. A visual interpretation of the analytical
solution is given in figure 3.1.
However, the analytical solution is based on the analytical form of the loss function
of logistic regression. This limits “M-Logit” to problems that are solvable by logistic
regression. Therefore, we generalize this concept of neglecting certain contributions to
the loss function to a Multi-Layer perceptron but it applies to any loss-driven learning
process where the loss is based on M-estimation.

3.4. MLP with adapting sample weights

Every classifier that minimizes the expected loss or risk by adjusting the model parameter
appropriately has to estimate the loss through the provided training dataset. If the
estimated loss is a sum over individual losses, this is called M-estimation. We can lessen
the contribution of single samples by weighting the individual losses. The estimated loss
can then be written as

L̂(θ,w) =
L

∑
l=1

wlL(yl∣xl,θ) − λ1∣∣w∣∣1 + λ2∣∣θ∣∣22 (3.38)

where wl, λ1, λ2 ≥ 0 ∀l = 1 → L and L is the number of samples in L and L is the
classifier’s loss function.
The motivation is that, by choosing a well-balanced λ1 the MLP will learn which samples
cannot achieve a low loss, since they are incorrectly labeled, and this constant loss will
outweigh the regularization term ∝ λ1 that increases when decreasing a weight.
The task is to minimize the estimated, expected loss w.r.t. θ,w simultaneously, so

θ∗,w∗ = arg min
θ,w

L̂(θ,w). (3.39)
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Figure 3.1.: Analytical solution to optimize equation (3.37) w.r.t. µ. For sample xa
na

∈ Da the

“wealth” is given by yana
ωTxa

na
. The blue bars represent the sorted wealth of all

samples in Da where ki is a permutation. The strategy is as follows, we assign
the least wealthy sample xa

k1
an auxiliary variable µ1 such that it becomes as

wealthy as the second least wealthy, i.e., yak1
ωTxa

k1
+ yak1

µ1 = yak2
ωTxa

k2
. Then, we

increase the wealth of the two least wealthy till they reach the wealth of the third

least wealthy. We continue till
Na

∑
na=1

yana
µna ≤ CNa. We set b = 0 for notational

simplicity.
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We solve the optimization in eq. (3.39) iteratively using coordinate descent with suffi-
ciently small step size.

3.5. Label correction

Finally, the last approach to exploiting the auxiliary pool is, to try to correct as many
false-labeled samples and treat the auxiliary pool as primary pool afterwards, i.e., treat
the auxiliary pool as if it was perfectly labeled.

The following four label correction methods can be divided into two subcategories that
correspond to different approaches conceptionally. The first subcategory is based on
a self-amplifying classifier. This means training a classifier on the data and using the
trained classifier to correct some labels. Then, retrain the classifier on the modified
labels and so on. The second subcategory is based on clustering methods to use the
structure of the data and correct labels.

3.5.1. Nearest neighbour correction (NNC)

This novel approach is based on a self-amplifying classifier. The idea is to iterate through
every sample and classify it using the K-nearest neighbours. If the classifier predicts a
different label with a confidence higher than some threshold p ∈ (0,1], store the predicted
label and mark the sample. After iterating through all samples once, all marked samples
adopt their predicted label. Repeat with updated labels till there are no more changing
labels.
The procedure is outlined in detail in algorithm 20.

3.5.2. Automatic data enhancement (ADE)

The approach is based on a self-amplifying classifier and is following closely the original
paper [36]. The idea is as follows: First, introduce a small uncertainty in the initially
given label distribution of each sample, so, e.g., (x1, y1 = 0)→ (x1, y1 = arg max p1,p1 =
(0.95,0.05)) for binary classification. Then, train a shallow (one hidden layer) MLP
with only one hidden node for one epoch and small step size. Next, use the trained
MLP to predict the label distribution of every sample and update every samples label
distribution doing a small step towards the prediction. Update the labels according to
yi = arg max pi. Note that during the training of the MLP the target is not the label
distribution. Repeat this process Nepoch times, then calculate an extended loss L(adj).
This repetition Nepoch times is called an era. Repeat eras till the extended loss (which
we calculate after each era) converges and store the last extended loss and the current
labels. Increase the number of hidden nodes by one and repeat this process all over
again. Stop increasing the number of hidden nodes till the converged extended loss
increases twice in succession. Then, return the label configuration corresponding to the
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Algorithm 20 Nearest neighbour correction

Input: Auxiliary pool Da
Parameters: Number of neighbours to consider K ∈ N, confidence p ∈ (0,1]
Output: Corrected pool Da

1: while Nc ≥ 1 do
2: Nc = 0
3: copy Da to Da,t = {(xt,1, yt,1), (xt,2, yt,2), .., (xt,Na , yt,Na)}
4: for na = 1→ Na do
5: find K-nearest neighbours {(x̃1, ỹ1), .., (x̃K , ỹK)} ⊆ Da of xna ∈ Da # note that

the labels of the NN are taken from Da and not Da,t
6: let p̂ be a zero-vector of length Z
7: for k = 1→K do
8: p̂ỹk += 1
9: end for

10: p̂← p̂
K # normalize

11: t = max
z∈Z

p̂z and z∗ = arg max
z∈Z

p̂z

12: if t ≥ p and yna ≠ z∗ then
13: yt,na = z∗
14: Nc += 1
15: end if
16: end for
17: Da ← Da,t # carry over all changes to next iteration
18: end while
19: return Da
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lowest converged, extended loss. This is the corrected label assignment.
The procedure is also outlined in algorithm 21.

A key point is that the extended loss L(adj) is the sum of three contributions. First, the
loss of the MLP, then an additional loss term that increases as the number of hidden
nodes increases. This is necessary to punish a model that is able of stronger overfitting
(since the model is more complex) which is especially unfortunate if some of the training
data is incorrect. Finally, the extended loss has one more term that increases as the class
ratio, resulting from the label assignment after each era, more strongly deviates from
the initial class ratio. This means if the initial label configuration represents a balanced
dataset then the corrected label configuration should be (more or less) balanced as well.
This is a consequence of assuming that the labels were mislabeled randomly.
At this point we stop and don’t dive into the details but you may refer to the paper [36]
for more information or, alternatively, look at my implementation in code, see section
3.5.5.

3.5.3. Cluster correction (CC)

As the name suggests this method is based on clustering the data and it is a slight
modification to the one proposed in [22].
The concept is to assign every sample the label distribution of its main cluster, i.e.,
samples in one cluster have the same label distribution. By introducing homogeneity
we hope to eliminate the false labels. To create cluster diversity we vary the number
of cluster centroids and every sample’s final label distribution is summed over the label
distribution that results from the different number of cluster centroids. Lastly, every
sample’s label is the argmax of its final label distribution.
The entire procedure is outlined in algorithm 22.

3.5.4. Binary cluster correction (BCC)

This is again a correction method based on clustering which is taken from [24]. To un-
derstand it we first discuss its underlying assumption.
In a perfect world instances of the same class are clustered around some region in data
space and different clusters do not overlap. This implies that if instances are labeled
perfectly the samples of one class can be approximated using only one clustering cen-
troid. But for every incorrectly labeled sample this cluster centroid would be a poor
approximation since class clusters do not overlap. This is the core idea behind BCC
which works in detail as follows. First, the auxiliary pool is split into subsets where
each subset is made up from instances that belong to the same class. Then, K-Means is
used to fit two cluster centroids to each subset since every subset consists of correct and
incorrect labels. For every subset the larger of the two clusters (the centroid to which
more samples belong/are closer) is assumed to be the “correctly labeled”-cluster and
all its samples are marked. Next, a classifier, e.g., a K-nearest neighbour classifier, is
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Algorithm 21 Automatic data enhancement

Input: Auxiliary pool Da
Parameters: number of epochs per era Nepoch ∈ N,

maximal number of eras Nera ∈ N,
learning rate model parameters ηω ∈ (0,1],
learning rate label distribution ηp ∈ (0,1],
convergence criterion ε ∈ (0,1]

Output: Corrected pool Da
1: let h = 1 be the initial number of hidden nodes of the MLP
2: let g(init) = Label-Distribution(Da) be the vector of initial class ratios
3: while True do
4: copy and extend Da to Da,h = {(xh,1, yh,1,ph,1), .., (xh,Na , yh,Na ,ph,Na)}
5: for nera → Nera do
6: for nepoch → Nepoch do
7: train MLP for one epoch with step size ηω on

{(xh,1, yh,1), .., (xh,Na , yh,Na)} ⊂ Da,h

8: use MLP to predict label distribution

p̂h,na ∶= P(F = MLP,xh,na) ∀na = 1→ Na

9: update label distributions, ph,na += ηp(p̂h,na − ph,na) ∀na = 1→ Na

10: update label assignments, yh,na ← arg max ph,na ∀na = 1→ Na

11: end for
12: calculate extended loss L̂(adj)

h (nera) = L(adj) where

L(adj) ∶= L(MLP) + L(complexity)(h) + L(deviation)(g(init),g(current))

13: if (∣L̂(adj)
h (nera) − L̂(adj)

h (nera − 1)∣ ≤ ε) or (nera is Nera) then

14: store the last loss L̂(adj)
h ← L̂(adj)

h (nera) and current label configuration Da,h
15: end if
16: end for
17: if (L̂(adj)

h ≥ L̂(adj)
h−1 ) and (L̂(adj)

h−1 ≥ L̂(adj)
h−2 ) then

18: break # exit while-loop
19: end if
20: h += 1
21: end while
22: h∗ = arg min

h
L̂(adj)
h

23: return Da,h∗
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Algorithm 22 Cluster correction

Input: Auxiliary pool Da
Parameters: number of clusterings A ∈ N
Output: corrected pool Da

1: let W be a zero-array of shape (Na, Z) # number of classes Z
2: let g(init) = Label-Distribution(Da) be the vector of initial class ratios
3: for a = 1→ A do
4: K ∶= a

A
N
2 + 2

5: use K-Means to fit K cluster centroids
6: compute m with mxna ∈ {1, ..,K} the main cluster of sample xna ∀xna ∈ Da
7: let gk be the vector of class ratios of the samples with main cluster k ∀k = 1→K

8: let Nk be the number of samples with main cluster k ∀k = 1→K
9: for na = 1→ Na do

10: let k ∶=mxna
11: calculate f = min (2, log10Nk)
12: W xna += f

gk−g(init)

g(init) # element-wise

13: end for
14: end for
15: yna = arg max

z∈Z
Wxna ,z ∀na = 1→ Na

16: return Da
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trained on all marked samples. Finally, treat all unmarked samples as unlabeled and use
the trained classifier to predict those labels. The predictions are the corrected labels.

3.5.5. Implementation in code

To see an implementation in python of all algorithms of section 3.5 you may check out
my repository called “automatic label correction” on Github

https://github.com/SimiPixel/automatic_label_correction .

56 CHAPTER 3. AUXILIARY DATA SOURCE

https://github.com/SimiPixel/automatic_label_correction
https://github.com/SimiPixel/automatic_label_correction


4. Results on toy data

After all this theory it is time to put it to use, so in this section we apply active learn-
ing and label correction to several toy and benchmark datasets. First, we create our
own 2D-dataset with different geometric decision boundaries to gain intuition about the
query strategies of pool-based active learning. Then, we proceed with typical benchmark
datasets such as Iris, Wine, EMNIST-Digits and the more demanding MNIST-Fashion
and investigate the performance gain by deploying active learning. In particular, we
take a look at the following query strategies: RS, US, EER, NNC, CMS, MdS, ALBL
and DEAL. To access the effectiveness of label correction we artificially falsify the toy
datasets and try to reverse this process. Here, we investigate all four label correction
methods, namely: NNC, ADE, CC and BCC.
Regardless, we start by introducing the toy datasets in more detail.

4.1. Toy datasets

4.1.1. 2D-input with geometric decision boundaries

For a first test we set up a toy classification problem. We draw 200 samples randomly
from a constant pdf with non-zero density only inside a 2-dimensional unit-square. Fur-
ther, we draw 200 more samples from a two-dimensional Gaussian pdf with expectation
value and covariance matrix

µ = (0.5
0.5

) , Σ = (0.05 0
0 0.05

) . (4.1)

To be more precise, in the case of the Gaussian pdf, we draw as long as we have less than
200 points within a unit square, and then disregard those outside of the unit square.
The points are displayed in figure 4.2.
We construct a binary classification problem by assigning labels w.r.t. a circle and a
XOR decision boundary. The choice of these exact datasets is motivated by [29], and
similar toy datasets there. So we end up with four different sets of data, see figure 4.3.

4.1.2. Iris

The Iris dataset contains three classes of different subgroups of the flower species “Iris”
with 50 samples for each class. Every instance is characterized by four positive real
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Figure 4.1.: The samples for the 2D-input are drawn from two distributions - a Gaussian- and
a constant/uniform pdf.

Figure 4.2.: 200 points drawn from a constant- and Gaussian probability density function. The
marked points is the initial data for the active learner in figure 4.6.

Figure 4.3.: Four different datasets - drawn from either a constant- or Gaussian pdf and labeled
with either a circular or XOR decision boundary.
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Figure 4.4.: The ten classes of EMNIST-Digits.

values corresponding to the sepal length and -width and to the petal length and -width
of the flower - values are in cm.

4.1.3. Wine

The Wine dataset involves 178 samples divided into three classes (class balance: {59,71,48})
with a dimensionality of 13 real positive values corresponding to various wine related
characteristic values such as, e.g., alcohol concentration, phenols or flavonoids. This
data is the result of a chemical analysis of wines grown in the same region in Italy but
derived from three different cultivars [12]. The task is to predict the cultivar given the
chemical analysis.

4.1.4. EMNIST-Digits and MNIST-Fashion

The EMNIST-Digits dataset [6] and the MNIST-Fashion dataset from zalando research
[33] are similar datasets. EMNIST-Digits is a dataset containing 280.000 pictures of
handwritten digits with ten balanced classes whereas MNIST-Fashion involves 70.000
pictures of fashion products with ten balanced classes. In both cases every picture
consists of 28x28 pixels and each pixel has a color value between zero and 255. The ten
classes are displayed in figure 4.4 and figure 4.5.
From both datasets we also generate a binary classification problem by reducing it to
two classes - threes or fives and dresses or coats, respectively. These combinations seem
to be the most difficult to differentiate between.
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Figure 4.5.: The ten classes of MNIST-Fashion.

Characteristic features of toy datasets:

Dataset name 2D-input Iris Wine EMNIST-Digits MNIST-Fashion

Number of samples 200 150 178 280000 70000
Number of features 2 4 13 784 784
Number of classes 2 3 3 10 10

4.2. Pool-based active learning

In this section we apply pool-based active learning, see section 2.1, to the datasets
mentioned in the previous section 4.1. To gain intuition why active learning works
we start with some nicely visualisable 2D-input, then we continue with the other toy
datasets and two different classifiers: A support vector machine (SVM) and a random
forest classifier (RFC).

4.2.1. 2D-input with geometric decision boundaries

We use pool-based active learning on the four datasets displayed in figure 4.3. For all
four datasets we choose a SVM with radial basis function kernel, see eq. (3.16), and
γ = 15 as our classifier.
It is noteworthy that the choice of γ strongly impacts the classifier’s performance. The
classifier performs poorly for low values of γ. This makes sense since the average distance
between two points in the four datasets is small, a small γ makes the already small
distance even smaller.
We compare four different base query strategies (base query strategies = strategies from
section 2.1.4), namely RS, US, EER and NNC. Further, we compare two more query
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strategies that both combine RS and US, namely, ALBL and DEAL.
In the case of EER we have to fix the classifier’s random seed to make the certainty
gains (or losses), after adding different points, comparable.
To compare the performance gain of different query strategies we split each dataset into
100 training and 100 test samples. Every active learner (query strategy + classifier)
starts with five randomly chosen labeled samples from the training pool as initial data.
We choose five points because of the implementation of EER - it simply considers every
occurring label in the labeled pool a possible label. This means if the labeled pool
consists of only one label EER will not work as expected. Obviously we could have fixed
the possible labels beforehand at the cost of making EER less easy to use in general.

Now, the boundary conditions are clear and we can continue by discussing several results.
The reason for creating the four datasets and applying pool-based active learning to them
is to gain intuition behind the workings of the different query strategies. For this task
such a 2D-input is well suited since it is nicely visualisable. In this spirit we consider
the “snapshot” in figure 4.6. It displays the “state” of the active learner that always
queries the sample with the highest entropy (US) after 50 training samples. To be more
precise, after the query strategy US has proposed a sample to label and the sample has
been added to the labeled pool for 45 iterations. Remember that all query strategies
start with the same five initial samples.
The first row in figure 4.6 is the classifier’s (and active learner’s) labeled pool where
the marked points are initial points, these are also the marked points in figure 4.2. The
second row is the classifier’s current prediction in input space and the third row is the
utility score of the query strategy, here entropy, in input space. Dark regions correspond
to high entropy.
We can nicely see that the classifier is the most uncertain at its current decision boundary.
This was expected but it is still nice that intuition is confirmed.
The four columns are the four different datasets. In the first and third column we also see
that the active learner avoided to query points from the center region (since the decision
boundary is not going through the center region) and thereby induces sampling bias, see
section 2.1.3. We say that there is sampling bias because, e.g., in the third column and
first row we see that the labeled pool has no samples in the center region even though
the sample density is largest in the center region in the entire labeled dataset, see third
column of figure 4.3.

Next, we discuss if and how well the six different query strategies are able to improve
label complexity. Remember that the label complexity refers to the number of labeled
data/labels necessary to reach a certain test accuracy.
One run consists of all six query strategies successively querying samples to label and
adding them to the training pool for 95 iterations. At every iteration we use the cur-
rently labeled data to train the same classifier and compute the test accuracy on the
same, 100 samples large, test pool. All query strategies start with the same five labeled
samples. We randomly redraw the four datasets for every run as we want to compare
the performance specific to the classification problem but not the actual data points.
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Figure 4.6.: State of active learner that queries samples with highest entropy (US) for 45 it-
erations. We start with five initial points (marked as red), then the labeled pool
consists of 50 training samples in total. The four columns a)-d) correspond to
the four datasets displayed in figure 4.3. The first row i) is the labeled pool of
the classifier/active learner, the second row ii) is the classifier’s label prediction in
input space - the color indicates the predicted label in a certain region in input
space. The third row iii) is the entropy of each point in input space - white color
corresponds to low entropy. We can see that the samples closest to the classifier’s
decision boundary have the highest entropy.
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We average the test accuracy at each query iteration and for every query strategy over
50 runs. This gives us the plots in figure 4.7.
Let’s discuss the results for the different query strategies one by one.
RS corresponds to not having a query strategy and sets the baseline for label complexity,
i.e., what accuracy we can “easily” achieve given a certain number of labels.
In all four datasets US always performs worse than RS early on (with few labeled sam-
ples) and becomes the best query strategy later on (with numerous labeled samples). As
already mentioned, US chooses the sample with the highest uncertainty (here entropy)
to be queried next. This is the sample that is close to the decision boundary but the
decision boundary implied by the classifier. Therefore, early on, the estimated decision
boundary is still vague. This leads to the query of below average samples. Later on, as
the classifiers estimated decision boundary coincides with the true decision boundary US
will become a good query strategy. This is typical of an exploit-heavy query strategy, a
query strategy that is prone to induce sampling bias. Either way US is capable of heavily
improving label complexity. E.g., in case of the “Gaussian + circle” dataset, using US
the accuracy gain converges at ≈ 40 labels, whereas randomly sampling requires all 100
samples to be labeled to reach the same accuracy level.
Unsurprisingly, EER behaves like an exploit-heavy query strategy, so poorly early and
decent later on. That is, because EER estimates the expected uncertainty reduction
when a sample is added to the labeled pool. The more labeled data the better the esti-
mation of the expectation value, i.e., the better the prediction of the class membership
probabilities.
NNC, in contrast to US and EER, performs exceptionally well early on and poorly later
(but still better than RS). This opposing behaviour motivates referring to NNC as an
explorative query strategy. This coincides with the fact that NNC does not use/exploit
any knowledge (the labels) acquired during the learning. NNC turns out to be a good,
systematic way of exploring data space and it synergises well with an exploit heavy
query strategy such as US that is used when sufficient labeled samples are obtained and
exploration fades into exploitation. We can determine this transition point dynamically
using a bandit algorithm such as ALBL or DEAL.
On this note we take a look at the performance of ALBL and DEAL. Both combine RS
and US. Since US performs worse than RS early on we expect both bandit algorithms
to adapt to this and perform as good as RS early on. As soon as US outperforms RS
we expect a weight shift that puts emphasis on US thereby leading to ALBL and DEAL
performing as good as US later on. This gives us the best of both worlds, so to speak.
Taking a closer look at figure 4.7 we find ALBL and DEAL exceeding expectation and
significantly surpassing the accuracy of US at the transition point (at roughly 20 labels)
in three of the four datasets (not in case of the lower left plot). Comparing ALBL to
DEAL we find both to perform comparably with a slight advantage for ALBL.
Finally, we note that in figure 4.7, and as always, the query strategies merely rearrange
a limited training pool (of in this case 100 samples). This explains the fact that given
a dataset all query strategies finish/end up with the same test accuracy. This happens,
because at the last query iteration (so at the far right in each subplot in figure 4.7) all
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query strategies have labeled every sample and finish with the same training pool.

As closing words we again emphasise the meaning of the results of this section. We
have shown that pool-based active learning is able to greatly decrease label complexity
in case of simple 2D-input. E.g. in case of US by ≈ 60%. In section 2.1.4 we tried to
illuminate the workings behind every query strategy. This typically involved assump-
tions. E.g. in case of US that samples with high uncertainty in its class membership
probability prediction are in fact close to a decision boundary. Or, in case of NNC that
a sample’s neighbour is actually representative of the sample. By showing that US and
NNC perform well we conclude that their respective assumptions are justified for these
datasets. The next step is to see if the assumptions of, e.g., US and NNC still hold up
for more complex datasets.

Parameter sheet for figure 4.7

Datasets: constant + circle (1), constant + XOR (2), Gaussian + circle (3), Gaus-
sian + XOR (4)

Dataset Number 1 2 3 4
Number of samples 200 200 200 200
Number of features 2 2 2 2
Number of classes 2 2 2 2
Initial number of samples 2 2 2 2
Initial number of classes 2 2 2 2
Final number of training samples 100 100 100 100
Number of test samples 100 100 100 100
Number of runs for averaging 100 100 100 100
Number of runs for EER 25 25 25 25

Classifier: SVM with radial basis function kernel and γ = 15

Query strategies:

Parameters
RS -

US method = ’entropy’, model = main classifier

EER depth = 1, model = main classifier

NNC -

ALBL query strategy = {US}, uniform sampler = True, model =
main classifier, T = 98, δ = 0.1

DEAL query strategy = {RS, US}, model = main classifier, γ = 0.1,
∆T = 10, T = 98, α = 0.1, β = 10
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Figure 4.7.: Test accuracy of a SVM with rbf kernel as a function of the number of labels. We
compare six different query strategies for the four datasets displayed in figure 4.3.
Both ALBL and DEAL combine RS and US. Averaged over 100 runs.
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4.2.2. Support vector machine (SVM)

We hope to reproduce the promising results from the previous section on the more com-
plex datasets Iris, Wine, EMNIST-Digits and MNIST-Fashion using a linear SVM as
classifier.
We compare five base query strategies, namely RS, US, CMS, EER and MdS. We also
include ALBL and DEAL which both combine RS and US.
Since, we want to compare the decrease in label complexity using these query strategies,
we need to compute average test accuracies. Therefore, we define one run as the follow-
ing: For the Iris dataset we randomly choose 100 samples as maximum training pool.
The residual 50 samples form the test pool. From the chosen 100 samples that form the
maximum training pool, we again randomly choose three samples as initial data. Analo-
gous, for the Wine dataset we randomly choose 100/78/3 samples as maximum training
pool/test pool/initial data. For the EMNIST-Digits and MNIST-Fashion dataset we
randomly choose 150/300/25 samples as maximum training pool/test pool/initial data.
We ensure that all initial datasets contain every class at least once.
Then, all query strategies successively query samples to label and add them to the train-
ing pool till the maximum training pool is reached. At every iteration, for every query
strategy and for every dataset, we use the currently labeled data to train the classifier
and compute the test accuracy.
We average the test accuracy over 20-200 runs (see parameter sheet for figure 4.8). This
gives us figure 4.8 with all parameters given in the corresponding parameter sheet.

Let’s discuss the results for the different datasets one by one.
For the Iris dataset we find US, CMS, ALBL and DEAL greatly decreasing label com-
plexity. E.g., CMS and US both peak at ≈ 40 labels. In contrast, MdS and EER perform
far worse than RS and almost double the label complexity. The reason why CMS and
US work well is due to the strong cluster structure of the Iris dataset. The fact that
EER performs so poorly is surprising and leaves room for speculation. We note that,
early on, US actually increases the label complexity and only outperforms RS after a
certain number of labels. We already discussed this familiar behaviour in the previous
section.
In case of the Wine dataset US, ALBL and DEAL perform very well. US peaks at ≈ 35
labels. This means that 35 samples chosen by US are sufficient and discarding the re-
maining 65 samples does not lead to any information loss. MdS performs slightly better
than RS. CMS only manages to decrease label complexity later on while EER always
increases label complexity.
We discuss the results on the EMNIST-Digits and MNIST-Fashion together. In both
cases US, ALBL and DEAL decrease label complexity. E.g. for the EMNIST-Digits
dataset US decreases label complexity by ≈ 20%. CMS and EER perform comparably
to RS. MdS increases label complexity for both datasets.
In case of their binary counterparts we find ALBL and DEAL performing best. Both
decrease label complexity. US is a second best due to it suffering from underwhelming
performance early on. It is quite remarkable how much better ALBL performs than US,
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Figure 4.8.: Training a linear SVM to classify six different datasets using seven different strate-
gies with parameters given in the figure’s parameter sheet. The plot displays the
test accuracy of the classifier versus the number of samples in the training pool.
ALBL and DEAL both combine RS and US. Displayed is the mean of 50 runs.
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considering it only adds a random query as an alternative. We also put emphasis on
how well ALBL and DEAL work. They almost seem to foresee the transition point from
RS to US. EER performs comparably to RS. CMS and MdS increase label complexity.

Parameter sheet for figure 4.8 and figure 4.10

Datasets: Iris (1), Wine (2), EMNIST-Digits (3), Digits binary (4), MNIST-Fashion
(5), Fashion binary (6)

Dataset Number 1 2 3 4 5 6
Number of samples 150 178 280000 56000 70000 14000
Number of features 4 13 784 784 784 784
Number of classes 3 3 10 2 10 2
Initial number of samples 3 3 25 2 25 2
Initial number of classes 3 3 10 2 10 2
Final number of training samples 100 100 150 100 150 100
Number of test samples 50 78 300 300 300 300
Number of runs for averaging 200 75 75 100 75 100
Number of runs for EER 50 20 20 50 20 50

Classifier:

• SVM with linear kernel function (figure 4.8)

• RFC with 10 estimators (figure 4.10)

Query strategies:

Parameters
RS -

US method = ’entropy’, model = main classifier

CMS space = ’full’

EER depth = 1, model = main classifier

MdS goal = ’low’, space = ’unlabeled’, metric = manhattan

ALBL query strategy = {US}, uniform sampler = True, model =
main classifier, T = 97/98/125, δ = 0.1

DEAL query strategy = {RS, US}, model = main classifier, γ = 0.1,
∆T = 10, T = 97/98/125, α = 0.1, β = 10

Now, we have established that pool-based active learning is capable of decreasing label
complexity. We try to answer the cost of deploying a query strategy as every query
strategy will require significantly more computational effort than RS.
To compare computation time we define

τ(Q, L) (4.2)
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as the time it takes Q to propose the next sample to label when the labeled pool contains
L samples. This allows us to then define two mean times

τ̄N(Q, L) = 1

N

N

∑
n=1

τ(Q, L) (4.3)

and

¯̄τN(Q) = 1

Lfinal −Linit

Lfinal

∑
L=Linit

τ̄N(Q, L) (4.4)

where Lfinal and Linit is the final and initial number of labels. Hence, we can use τ̄N(Q, L)
to compare how the computation time of query strategy Q changes as the number of
labels increases. We use ¯̄τN(Q) to compare the computational requirement of different
query strategies.
Figure 4.9 displays τ̄50 of different query strategies versus the number of labels using the
Iris dataset.
Note that in figure 4.9, and as always, the query strategies merely rearrange a limited
training pool (of in this case 100 samples). This explains the (not-exclusive) tendency of
query strategies becoming quicker as the number of labels increase, since the unlabeled
pool is getting smaller as the query strategies have less options to choose from. This also
explains the artifact at the last iteration, so when going from 99 to 100 labels. There is
only one unlabeled sample left and therefore, the query strategy has no more choice.
Finally, table 4.1 compares query times averaged over all query iterations of different
query strategies on different datasets.
We note two results. First, combining RS, US and CMS by using ALBL or DEAL leads
to a significant increase in computational time compared to the summed effort of RS,
US and CMS. Secondly, EER is between one to two orders of magnitude (≈ 30-times)
slower than all other query strategies. E.g., in case of the EMNIST-Digits dataset the
average query iteration of EER requires above one second (1.4s).

Overall, it is clear that pool-based active learning is able to decrease label complexity,
but with the added difficulty of choosing an appropriate query strategy given the dataset.
US performs well on all datasets. We conclude that combining US with an additional
query strategy specific to the dataset using ALBL and DEAL seems appropriate. The
added computational time this approach requires is negligible.
All results of this section use a linear SVM as a classifier. The next step is to try to
duplicate these results using a different classifier.
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Figure 4.9.: Comparison of computation time of different query strategies during the training
process using the Iris dataset and a linear SVM. The y-axis shows τ50 (definition
eq. (4.3)), the time a query strategy needs to determine the next sample to label,
averaged over 50 runs. τ50(EER)/30 means that the times for EER are 30 times
larger than what is plotted. RankS, ALBL and DEAL all have RS, US and CMS
as base query strategies. Computation was performed on a two-core, four-threaded
Xeon CPU clocked at 2.2 GHz.

Query strategy → RS US CMS ReS MdS
Dataset ↓ ∣ ¯̄τ10 [ms]↘ EER QbC RankS DEAL ALBL

Iris 1.2 ⋅ 10−1 1.7 6.6 ⋅ 10−1 1.1 1.2
2.2 ⋅ 102 6.8 2.5 5.2 4.5

Wine 1.2 ⋅ 10−1 1.4 ⋅ 102 7.1 ⋅ 10−1 1.2 1.2
5.1 ⋅ 103 1.1 ⋅ 102 1.1 ⋅ 102 2.2 ⋅ 102 2.3 ⋅ 102

Digits 2.1 ⋅ 10−1 3.5 ⋅ 101 1.4 1.8 1.4
1.4 ⋅ 103 5.8 ⋅ 101 3.7 ⋅ 101 7.3 ⋅ 101 7.3 ⋅ 101

Digits binary 2.2 ⋅ 10−1 1.3 ⋅ 101 1.3 1.6 1.5
3.1 ⋅ 102 2.2 ⋅ 101 1.4 ⋅ 101 2.6 ⋅ 101 2.6 ⋅ 101

Fashion 1.9 ⋅ 10−1 3.1 ⋅ 101 1.3 1.7 1.4
1.4 ⋅ 103 5.3 ⋅ 101 3.3 ⋅ 101 6.6 ⋅ 101 6.5 ⋅ 101

Fashion binary 2.0 ⋅ 10−1 1.0 ⋅ 101 1.3 1.6 1.6
3.0 ⋅ 102 1.8 ⋅ 101 1.2 ⋅ 101 2.2 ⋅ 101 2.2 ⋅ 101

Table 4.1.: Comparing computational time (definition eq. (4.4)) of different query strategies
on different datasets averaged over the training process for a linear SVM. RankS,
ALBL and DEAL all have RS, US and CMS as base query strategies. Computation
was performed on a i7-8700 (6-core, 12-threaded, @4.2GHz).
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4.2.3. Random forest classifier (RFC)

We repeat the exact calculations of the previous section but with a RFC with ten esti-
mators instead of a linear SVM.
Therefore, the only difference between figure 4.8 and 4.10 and also between the tables
4.1 and 4.2 lies in the classifier choice. The parameters of all involved query strategies
are given in the corresponding parameter sheet.

We again go through the results of figure 4.10 by datasets.
In case of the Iris dataset we find multiple query strategies performing very well. E.g.,
the test accuracy using US peaks with less than 30 samples. Consequently, US results
in a decrease of label complexity of ≈ 70%. In the previous section, using a linear SVM,
EER performed poorly. This is no longer the case using a RFC. Instead, CMS now
increases label complexity when using a RFC.
For the Wine dataset US and EER lead to a decrease of label complexity. MdS performs
poorly. The remaining query strategies perform comparably or slightly better than RS.
In case of the EMNIST-Digits and MNIST-Fashion datasets all query strategies except
for MdS and CMS lead to a small decrease of label complexity. Surprisingly, for the
MNIST-Fashion dataset EER performs best.
In both binary datasets US, EER, ALBL and DEAL all decrease label complexity. E.g.,
in case of the binary Fashion dataset US manages to peak after only 50 labels. Therefore,
US reduces label complexity by ≈ 50%.
Table 4.2 gives the computation time of every query strategy for the different datasets
and averaged over the query iterations. We find similar results as in the previous section.
EER is faster on, e.g., the MNIST-Digits dataset than before. This is simply due to the
fact that the RFC fits the MNIST-Digits dataset faster than the linear SVM. We can
see this by, e.g., comparing the computational time of US on the MNIST-Digits dataset
using a linear SVM (3.5 ⋅ 101ms) to using a RFC (1.1 ⋅ 101ms).

As a whole pool-based active learning is able to decrease label complexity in several
datasets and using different classifiers. The additional computation time it requires is
insignificant except when using EER. With this in mind we finish our investigation of
pool-based active learning on toy datasets.
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Figure 4.10.: Training a RFC with ten estimators to classify six different datasets using seven
different strategies with parameters given in the figure’s parameter sheet. The
plot displays the test accuracy of the classifier versus the number of samples in
the training pool. ALBL and DEAL both combine RS and US. Displayed is the
mean of 50 runs.
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Query strategy → RS US CMS ReS MdS
Dataset ↓ ∣ ¯̄τ10 [ms]↘ EER QbC RankS DEAL ALBL

Iris 1.2 ⋅ 10−1 1.0 ⋅ 101 6.5 ⋅ 10−1 1.2 1.4
4.0 ⋅ 102 6.0 ⋅ 101 1.1 ⋅ 101 3.9 ⋅ 101 3.9 ⋅ 101

Wine 1.8 ⋅ 10−1 1.0 ⋅ 101 8.4 ⋅ 10−1 1.5 1.4
4.0 ⋅ 102 6.1 ⋅ 101 1.1 ⋅ 101 4.0 ⋅ 101 3.9 ⋅ 101

Digits 1.8 ⋅ 10−1 1.1 ⋅ 101 1.3 1.7 1.4
8.9 ⋅ 102 6.1 ⋅ 101 1.4 ⋅ 101 4.5 ⋅ 101 4.4 ⋅ 101

Digits binary 1.7 ⋅ 10−1 1.0 ⋅ 101 1.2 1.6 1.3
3.6 ⋅ 102 6.0 ⋅ 101 1.2 ⋅ 101 4.2 ⋅ 101 4.1 ⋅ 101

Fashion 1.9 ⋅ 10−1 1.2 ⋅ 101 1.4 1.8 1.4
8.9 ⋅ 102 6.1 ⋅ 101 1.4 ⋅ 101 4.6 ⋅ 101 4.4 ⋅ 101

Fashion binary 1.7 ⋅ 10−1 1.1 ⋅ 101 1.4 1.5 1.5
3.6 ⋅ 102 6.0 ⋅ 101 1.3 ⋅ 101 4.1 ⋅ 101 4.1 ⋅ 101

Table 4.2.: Comparing computational time (definition eq. (4.4)) of different query strategies
on different datasets averaged over the training process for a RFC with ten trees.
RankS, ALBL and DEAL all have RS, US and CMS as base query strategies. Com-
putation was performed on a i7-8700 (6-core, 12-threaded, @4.2GHz).
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4.3. On-line active learning

We switch from the pool-based approach to on-line active learning. This means we apply
the query strategies of section 2.2.2 to the six toy datasets of section 4.1. We compare
yet again two classifiers - a linear SVM and a RFC with ten estimators.

4.3.1. Support vector machine (SVM)

We chose a linear kernel function for the SVM. Remember that on-line active learning is
more label efficient by occasionally choosing that a sample should not be labeled whereas
passive learning (RS) chooses to label every sample. Hence, the goal is to maintain a
similar test accuracy as passive learning while requesting less labels.
Therefore, to evaluate the effectiveness of the different query strategies we have to con-
sider two plots simultaneously. The first plot displays the test accuracy versus the
number of queries. The second plot shows the number of requested labels as a function
of the number of queries. The number of queries can also be interpreted as a time axis
if we assume that unlabeled samples are created at a constant rate. The occurrence of
every unlabeled sample corresponds to a query, i.e., a decision whether or not the sample
should be labeled. In the second plot RS will show up as a line with slope one, i.e., RS
decides to label every sample such that every query results in a requested label.
For all six dataset and five query strategies figure 4.13 and 4.14 display the test accuracy
and number of requested labels as a function of the number of queries.

The results can be interpreted in two ways.
Equal cost/labels:
As before we refer to the plot of test accuracy versus number of queries as the first plot
and to the plot of the number of requested labels versus number of queries as the second
plot.
We can compare two query strategies in on-line active learning in the following manner.
In the second plot choose a value for the number of requested labels, check how many
number of queries both query strategies require to reach the number of requested la-
bels. In the first plot see which accuracy both query strategies achieve at that number
of queries. This compares the accuracy of both query strategies at equal number of
labels/cost.
This procedure is also shown in figure 4.11.

Equal test accuracy:
In the first plot choose a test accuracy and see how many queries both query strategies
need to achieve the chosen test accuracy. Then, in the second plot compare how many
labels both query strategies have requested at the corresponding number of queries. This
directly compares label complexity. The procedure is also shown in figure 4.12.

With this in mind we take a closer look at the figures 4.13 and 4.14. Overall, we
find on-line active learning showing good performance of the involved algorithms in the
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Figure 4.11.: Procedure used to compare two query strategies in on-line active learning using a
linear SVM and the Wine dataset. Here, we estimate the accuracy gain by using
US w.w. over RS at equal number of labels.

Figure 4.12.: Procedure used to compare two query strategies in on-line active learning using
a linear SVM and the Wine dataset. Here, we estimate the decrease in label
complexity by using US w.w. over RS at equal accuracy.
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less complex datasets Iris, Wine, binary Digits and binary Fashion but struggling for
the EMNIST-Digits and MNIST-Fashion datasets. In most cases US outperforms EER
while the addition of weights does not seem to play a significant role either way.

4.3.2. Random forest classifier (RFC)

We repeat the same calculations as in the previous chapter but chose a RFC with ten
estimators as our classifier. We average over 50 runs resulting in figure 4.15 and 4.16.
The only difference between the figure 4.13 and 4.15 and also between figure 4.14 and
4.16 lies in the choice of classifier.

We find identical results as in the previous chapter. On-line active learning is able to
decrease label complexity for the Iris, Wine, binary Digits and binary Fashion dataset.
E.g., for the Wine dataset after ≈ 30 queries US w.w. is able to match the accuracy
of RS while having only requested half of the labels. On-line active learning performs
subpar in the EMNIST-Digits and MNIST-Fashion datasets.
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Figure 4.13.: Performance comparison of on-line active learning using different strategies and
datasets, the trained model is a SVM with linear kernel. Two subplots should be
interpreted together, e.g., for the Iris dataset subplot a) shows the test accuracy
as a function of the number of queries and subplot b) displays the number of
labels the strategy has already requested as a function of the number of queries.
The goal of an efficient strategy is to maintain a similar accuracy as RS, while
requesting less labels. Similarly, c) and d) is for the Wine, and e) and f) for the
EMNIST-Digits dataset. All plots are averaged over 50 runs.
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Figure 4.14.: Performance comparison of on-line active learning using different strategies and
datasets, the trained model is a SVM with linear kernel. Two subplots should
be interpreted together, e.g., for the Digits binary dataset subplot a) shows the
test accuracy as a function of the number of queries and subplot b) displays the
number of labels the strategy has already requested as a function of the number
of queries. The goal of an efficient strategy is to maintain a similar accuracy as
RS, while requesting less labels. Similarly, c) and d) is for the MNIST-Fashion,
and e) and f) for the Fashion binary dataset. All plots are averaged over 50 runs.
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Figure 4.15.: Performance comparison of on-line active learning using different strategies and
datasets, the trained model is a RFC with ten estimators. Two subplots should be
interpreted together, e.g., for the Iris dataset subplot a) shows the test accuracy
as a function of the number of queries and subplot b) displays the number of
labels the strategy has already requested as a function of the number of queries.
The goal of an efficient strategy is to maintain a similar accuracy as RS, while
requesting less labels. Similarly, c) and d) is for the Wine, and e) and f) for the
EMNIST-Digits dataset. All plots are averaged over 50 runs.
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Figure 4.16.: Performance comparison of on-line active learning using different strategies and
datasets, the trained model is a RFC with ten estimators. Two subplots should
be interpreted together, e.g., for the Digits binary dataset subplot a) shows the
test accuracy as a function of the number of queries and subplot b) displays the
number of labels the strategy has already requested as a function of the number
of queries. The goal of an efficient strategy is to maintain a similar accuracy as
RS, while requesting less labels. Similarly, c) and d) is for the MNIST-Fashion,
and e) and f) for the Fashion binary dataset. All plots are averaged over 50 runs.
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Figure 4.17.: Demonstrating the falsification step on toy datasets consisting of three classes
separated in three clusters. Label correction inverts the falsification process by
introducing label homogeneity in the clusters. The clusters are indicated as cir-
cles.

4.4. Label correction

This section is dedicated to applying the algorithms outlined in section 3.5 to toy
datasets. Obviously the toy datasets are certainly very well labeled such that there
is nothing to correct. In order to proceed we artificially falsify a percentage of every
dataset and then check to which degree we can invert this process and retrieve the orig-
inal dataset.
Let’s start by talking about how we falsify the toy data. We draw randomly a fraction
β samples out of the dataset. For each class z = 1 → Z, on average βNz instances
(Nz is the number of instances of class z) are randomly mislabeled to one of the other
(Z − 1) classes. Among the βNz instances, the number of samples labeled to class z′ is
proportional to Nz′ . Following this procedure keeps the class distribution/ratio of the
mislabeled data close to the one of the original data. This is a consequence of assuming
that mislabelings have a random nature – each instance has an equal chance to be mis-
labeled. Based on this assumption, we can infer that the class distribution for a dataset
with mislabeling should reflect the one without mislabeling. We adopt this procedure
from the following paper [36].
The falsification step and label correction as its inversion is displayed in the toy exam-
ple in figure 4.17. This should also give an intuition why correct labels are recoverable
beyond a falsification degree ≥ 0.5, i.e., when there are as many or more incorrect than
correct labels. All label correction methods work by dividing data space in regions and
introducing homogeneity in those regions. In the example, a successful label correction
method divides the data in three clusters (indicated by circles) and introduces homo-
geneity in each cluster separately.

To quantify the effectiveness of the different correction algorithms we define the correc-
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tion factor C as

C(β) ∶= Nc(β) − (1 − β)N
βN

(4.5)

where N is the number of samples, β is the mislabeled fraction and Nc is the number of
samples with correct label assignment after label correction, which obviously depends on
β. This means that C = 1 implies that all labels are corrected whereas C = 0 corresponds
to as many correct labels as before correction.
Of course this will not be applicable if we never have the correct labels to begin with
as it will be the case for the real-world data in the next chapter. Then, an alternative
method of gauging the correction algorithms effectiveness would be to train a classifier
using the original labels and the corrected labels and compare its test accuracies. This
still requires us to have a perfectly labeled (smaller) pool to compute test accuracies.
Fortunately, this is exactly the setup of the subsequent chapter on real-world data.

To compare test accuracies before and after correction we use the simplest nearest neigh-
bour classifier, i.e., a K-NN classifier with K = 1. It predicts a test sample’s label as
the label of the closest training sample. To get accurate estimates we use 10-fold cross
validation to compute accuracies on data which the classifier has not used for training
(definition of test accuracy).
In this context this means we split the entire dataset into ten equally large subsets.
Without loss of generality we pick the first subset as our test data and the remaining
subsets are training data. Then, we artificially falsify a fraction β of the training data
(the nine remaining subsets) and either apply a label correction algorithm or use the
data directly to train our classifier. Then, we use the trained classifier to compute the
prediction accuracy on the test subset. We average over the ten different choices of test
subset. This is again in complete analogy to [36].

Now, we are able to apply the four different algorithms for label correction NNC, ADE,
CC and BCC namely to the Iris, Wine and EMNIST-Digits dataset.

4.4.1. Nearest neighbour correction (NNC)

We use algorithm 20 with K = 8 and confidence p = 0.5 on three artificially falsified
datasets corresponding to Iris, Wine and EMNIST-Digits with different levels of falsifi-
cation β.
The resulting correction factor (definition eq. (4.5)) is given in figure 4.18 and the test
accuracy of a 1-NN classifier after training on the falsified and on the corrected data is
given in figure 4.19.

The novel algorithm NNC is a strong performer. In figure 4.18 we see that it is able to
correct a large fraction of falsified data in case of the Iris and EMNIST-Digits dataset.
For the EMNIST-Digits dataset even at a falsification of β = 0.5 NNC manages to almost
completely retrieve the original labels. This is due to the fact that EMNIST-Digits has
ten classes and the assumption that mislabelings have a random nature.
In figure 4.18 NNC struggles for the Wine dataset and small percentages of false labels β.
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Figure 4.18.: The correction factor (see eq. (4.5)) after applying NNC on falsified Iris a), Wine
b) and EMNIST-Digits c) dataset as a function of the fraction of incorrect labels
β. A correction factor of one is equivalent to all incorrect labels are corrected
whereas a correction factor of zero implies that the correction algorithm has no
positive (or negative) impact. Plotted is the mean of 20 runs, ± one standard
deviation.

Regardless, in figure 4.19 we can see that NNC still manages to increase the test accuracy
of a 1-NN classifier significantly, even in the case of the Wine dataset. This is especially
interesting around β ≈ 0.3, we see a correction factor of zero but a huge improvement
in the test accuracy of a 1-NN classifier. It is crucial to note that a correction factor
of zero only means that there are as many incorrect labels after correction than before.
But only the amount of incorrect labels has to be equal - not the actual samples. We
conclude that NNC reassigns labels in a more efficient way while conserving an equal
number of incorrect labels. To do so, it also has to change correct labels into incorrect
ones.
There is small improvement in the test accuracy in case of the Iris dataset and no false
labels (β = 0), implying that the Iris dataset may not be perfectly labeled to begin with.
Finally, we note that in figure 4.19 it is quite impressive how well NNC manages to
maintain a high test accuracy up till large values of falsification.

4.4.2. Automatic data enhancement (ADE)

We apply algorithm 21 with Nepoch = 50,Nera = 50, ηω = 10−5, ηp = 10−3, ε = 10−5 on
three artificially falsified datasets corresponding to Iris, Wine and EMNIST-Digits with
different levels of falsification β.
The resulting correction factor (definition eq. (4.5)) is given in figure 4.20 and the test
accuracy of a 1-NN classifier after training on the falsified and on the corrected data is
given in figure 4.21.

The results suggest that ADE only proves effective in case of the Iris dataset. But this is
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Figure 4.19.: Test accuracy of a 1-NN classifier trained on falsified data (orange curve) and
on falsified data after applying NNC (blue curve) as a function of the fraction
of incorrect labels β. Datasets are Iris a), Wine b) and EMNIST-Digits c) and
10-fold CV is used to estimate test accuracies. Plotted is the mean of 20 runs, ±
one standard deviation.

misleading since ADE heavily depends on hyperparameters and the above chosen param-
eters are carefully chosen for the Iris dataset. Unfortunately, choosing well calibrated
hyperparameters for the Wine and EMNIST-Digits dataset is non-trivial. This hyper-
parameter complexity turns out to be ADE’s biggest downfall as it makes it difficult to
present an out-of-the-box working algorithm which is always desirable.
Regardless, in case of the Iris dataset (with well chosen hyperparameters) the results of
ADE are positive.
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Figure 4.20.: The correction factor (see eq. (4.5)) after applying ADE on falsified Iris a), Wine
b) and EMNIST-Digits c) dataset as a function of the fraction of incorrect labels
β. A correction factor of one is equivalent to all incorrect labels are corrected
whereas a correction factor of zero implies that the correction algorithm has no
positive (or negative) impact. ADE performs poorly on Wine and EMNIST-
Digits, this is due to difficult to choose hyperparameters. Plotted is the mean of
20 runs, ± one standard deviation.

Figure 4.21.: Test accuracy of a 1-NN classifier trained on falsified data (orange curve) and
on falsified data after applying ADE (blue curve) as a function of the fraction
of incorrect labels β. Datasets are Iris a), Wine b) and EMNIST-Digits c) and
10-fold CV is used to estimate test accuracies. Plotted is the mean of 20 runs, ±
one standard deviation.
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Figure 4.22.: The correction factor (see eq. (4.5)) after applying CC on falsified Iris a), Wine
b) and EMNIST-Digits c) dataset as a function of the fraction of incorrect labels
β. A correction factor of one is equivalent to all incorrect labels are corrected
whereas a correction factor of zero implies that the correction algorithm has no
positive (or negative) impact. Plotted is the mean of 20 runs, ± one standard
deviation.

4.4.3. Cluster correction (CC)

Next, we continue by applying algorithm 22 with number of clusterings A = 25 on
three artificially falsified datasets corresponding to Iris, Wine and EMNIST-Digits with
different levels of falsification β.
The resulting correction factor (definition eq. (4.5)) is given in figure 4.22 and the test
accuracy of a 1-NN classifier after training on the falsified and on the corrected data is
given in figure 4.23.

CC also proves, next to NNC, as a strong performer. In figure 4.23 we can see that CC
manages to maintain a high test accuracy for all three datasets.
It should be noted that, in case of the Wine and EMNIST-Digits dataset and a low
percentage of false labels it proves counter-productive and slightly decreases test accuracy
of the 1-NN classifier.
CC also shows similar behaviour to NNC when we look at the Wine dataset and a
falsification of β ≈ 0.25. Despite a correction factor of zero, CC significantly increases
the test accuracy of a 1-NN classifier. This again suggests that CC also turns correct
into incorrect labels.
Further, CC also manages to slightly increase the test accuracy in case of the Iris dataset
and no false labels and thereby implies false labels in the original dataset.
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Figure 4.23.: Test accuracy of a 1-NN classifier trained on falsified data (orange curve) and
on falsified data after applying CC (blue curve) as a function of the fraction of
incorrect labels β. Datasets are Iris a), Wine b) and EMNIST-Digits c) and 10-
fold CV is used to estimate test accuracies. Plotted is the mean of 20 runs, ± one
standard deviation.

4.4.4. Binary cluster correction (BCC)

Finally, we use the algorithm of section 3.5.4 for label correction (BCC does not have
any hyperparameters) on three artificially falsified datasets corresponding to Iris, Wine
and EMNIST-Digits with different levels of falsification β.
The resulting correction factor (definition eq. (4.5)) is given in figure 4.24 and the test
accuracy of a 1-NN classifier after training on the falsified and on the corrected data is
given in figure 4.25.

BCC shows decent performance but is inferior to both NNC and CC. Still, it results in
a substantial improvement in test accuracy for all three datasets and a higher degree of
falsification (β ≥ 0.2). In case of the Wine and EMNIST-Digits dataset and a low degree
of falsification BCC disimproves the test accuracy, especially for the EMNIST-Digits
dataset.
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Figure 4.24.: The correction factor (see eq. (4.5)) after applying BCC on falsified Iris a), Wine
b) and EMNIST-Digits c) dataset as a function of the fraction of incorrect labels
β. A correction factor of one is equivalent to all incorrect labels are corrected
whereas a correction factor of zero implies that the correction algorithm has no
positive (or negative) impact. Plotted is the mean of 20 runs, ± one standard
deviation.

Figure 4.25.: Test accuracy of a 1-NN classifier trained on falsified data (orange curve) and
on falsified data after applying BCC (blue curve) as a function of the fraction
of incorrect labels β. Datasets are Iris a), Wine b) and EMNIST-Digits c) and
10-fold CV is used to estimate test accuracies. Plotted is the mean of 20 runs, ±
one standard deviation.
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In the previous chapter we have seen active learning being applied to several toy/benchmark
datasets. While this can prove a working concept, it is still important to replicate similar
results on real-world data. Therefore, we will start by explaining the problem formu-
lation which we want to solve using some specific data and also talk about the data
encoding. Finally, in this scenario we are also provided with an auxiliary data source
which will allow us to apply the theory from chapter 3.

5.1. Real-world data

The problem formulation and data originate in a bottle filling plant. There, several
machines work together in a chain to form a production line. Every machine fulfills a
certain task such as cleaning, filling or labeling. The filling machine in this production
line is of special importance. The filler should not have too many or too long stops for
ensuring product quality, i.e., it should always be working, so filling bottles. To ensure
that, an artificial bottleneck is created at the filling machine. This means all machines
before and after the filling machine have a higher pass-through bottle performance than
the filler, while the filling machine runs at full throttle. This is called a V-shaped pro-
duction line, since the pass-through capability of a machine as a function of the machines
ordered along the bottle stream, follows a V-shape. By doing so smaller fluctuations of
the bottle current happening away from the filling machine never disturb its flow.
Still, sometimes the filling machine will enter a non-productive state. The task is to
predict the machine where the failure, leading to the filler’s non-productive state, orig-
inated. For that we are provided with a time series of machine states before (due to
causality) the filler entered the non-productive state, including the moment of the filler
stop. The time series is a record of every machine’s current state at several time stamps
(before the incident at the filler). There are four machine states - productive, lack (too
little bottles before the machine), tailback (too many bottles after the machine) and
failure. To understand this better look at the artificial example in figure 5.1. Here the
root cause for the non-productive state of the lead machine 6, is the previous failure of
machine 4. Therefore, the label for this time series would be machine 4.
Unfortunately, machine-states captured in a time series do regularly not paint a clear
picture, making the labeling often non-obvious, see figure 5.2 for an example.
Finally we are given two separate datasets - the primary pool, labeled by a human and
assumed to be perfectly labeled and the auxiliary pool, labeled by a hard-coded logic
with unknown labeling accuracy.
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Figure 5.1.: Artificial example of machine states that lead to a time series with label machine
4. Machine 4 experiences a failure, this leads to a retarded tailback at machine 3
and retarded lacks in machine 5 and 6. The time series window is positioned right
before the head machine 6 enters a non-productive state.

Having understood the real-world data we continue by discussing the framework of active
learning in the context of our real-world data and finally use the methods from chapter
3 on the auxiliary pool.

Characteristic features of real-world data:

Dataset name primary data auxiliary data

Number of samples 342 6703
Number of features 36 36
Number of classes 9 10

5.2. Active learning

When the idea of a master thesis that treats active learning originated, the ulterior
motive was to ultimately implement active learning in a colleague’s project (the real-
world data) to decrease the labeling efforts.
The most obvious realization of active learning in the classification setup our real-world
data poses, is to maintain a large unlabeled pool of past errors that is updated by a
sample whenever a machine failure occurs. Then, occasionally the expert decides to
label some samples and the query strategy proposes data points to label from the large
pool. Since a time series of machine states can be highly cryptic (e.g. figure 5.2), this
poses the obvious problem of having to label machine failures that happened in the far
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Figure 5.2.: Real-world example of machine states that lead to a time series with label machine
7/Labeler.

past or may have not even been observed during the expert’s shift.
A simple solution is to keep the unlabeled pool small by only saving the failures that
occurred during a shift and at the end of this shift the operator/expert labels a fraction
of this smaller pool. Afterwards, all remaining unlabeled samples get discarded and
then the next shift with a different expert starts. This solves both previously mentioned
problems by guaranteeing that data points are at most one shift duration old and have
obviously happened on the expert’s watch.
We now investigate this framework regarding what value for the fraction of number of
samples that get labeled gives the best compromise between accuracy and labeling effort.
This assumes that we have already found a query strategy that works efficiently on the
given data, so let’s take one step back and start from there.

As our classifier we chose a SVM with polynomial kernel of degree three. The two query
strategies that emerge as the best performing are US and NNC. Their performance is
illustrated in figure 5.3.
NNC outperforms RS and US early on while US outperforms RS and NNC later. By
combining both using DEAL we are able to heavily decrease label complexity at all
stages. E.g., DEAL peaks at ≈ 60 labels. Thereby, acquired labels past that point are a
waste as they don’t contribute any additional information. In comparison to RS, DEAL
reduces the labels required to reach peak accuracy from 150 to 60, resulting in a decrease
of label complexity of ≈ 60%.
We also put emphasis on the quickness of DEAL in adapting to NNC early and to US
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Figure 5.3: Comparing different query strate-
gies on the real-world data of sec-
tion 5.1 using a SVM with polyno-
mial kernel of degree three. DEAL
uses US and NNC as base query
strategies. All three query strate-
gies perform clearly better than
sampling randomly (RS). Initial
data is three samples and three
classes. Averaged over 50 runs.

at the transition point.

Having chosen a classifier and proper query strategies we return to the original problem
of finding the most efficient fraction value. We assume that

number of failures per shift n = 10 (5.1)

and conclusively there are ten possible fraction values given by

fraction value p ∈ {0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,1} (5.2)

where, e.g., p = 0.1 corresponds to labeling one sample (out of the ten) per shift.
This allows us to track the classifier accuracy as a function of previous shifts to create
figure 5.4.
Using the plots in figure 5.4 we can, once again, show the superiority of US over RS
by computing the center of mass of the area under the different curves (AUC). This
process assigns every curve two scalar values - the coordinates of the center of mass of
the AUC. Given our 20 shifts of latter figure, it follows that the perfectly performing
curve (a constant one function and its AUC a rectangle) has center of mass coordinates
(x, y) = (10.5,0.5).
Plotting the x/y-coordinates of the center of masses versus fraction values p gives figure
5.5.
Since the best performing curve has the lowest possible x-value and highest possible
y-value of the center of mass coordinates (COM), we can conclude that US performs
better than RS. Of course we already knew that from figure 5.3. For now let’s stick with
only US for that reason and return to the actual problem of finding the ideal fraction
value p.
In order to be able to gauge the accuracy gain of choosing a high fraction value against
the associated additional labeling cost we introduce a cost function. This cost function
gives us the expected expense for the next shift. It consists of the labeling costs and the
cost induced by misclassification and we define it as

C(c1, c2, p, n, a) ∶= c1pn + c2(1 − a)n (5.3)
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Figure 5.4.: Classifier accuracy as a function of previous shifts for different fraction values p.
In the left figure the samples to label per shift are chosen randomly whereas in
the right figure US proposes the samples to label. In the first shift all samples are
labeled regardless of p to ensure large enough class diversity. Averaged over 500
runs.

Figure 5.5.: Center of mass coordinates (COM) of the AUC of figure 5.4 versus the fraction
values p. The y-axis of the left figure is the x-value of COM - the lower the better.
The y-axis of the right figure is the y-value of COM - the higher the better. We
can see US outperforming RS.
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Figure 5.6.: The expected cost for the next shift as a function of the number of previous shifts
for different fraction values p. The left, middle and right figure have cost ratio
values of c = 0,0.9,1, respectively. Note that for c = 0.9 low- as well as high values
of p give high expected cost.

where c1 ∈ R is the cost for labeling one sample, c2 ∈ R is the cost per misclassified
sample/failure, p is the fraction value, n is the number of samples per shift and a is the
accuracy of the classifier before the shift.
Substituting

c1 = (1 − c)b, c2 = cb or b = c1 + c2, c =
c2

b
(5.4)

results in the convex combination

C(c, b, p, n, a) = b((1 − c)pn + c(1 − a)n). (5.5)

Since b is just an overall scaling factor it can be set to one without loss of generality.
While this is also true for n it, in contrast to b, does play a role since a depends on n. This
means that we end up with one cost ratio c where c = 0 corresponds to misclassification
does not induce cost and c = 1 implies additional labels do not induce cost. To gain
more intuition, take a look at figure 5.6. In the left figure c is zero thus misclassification
does not induce cost and the expected cost is constant and only depends on the number
of samples to label. In the right figure c is one and therefore additional labels are
free so naturally high fraction values give low expected cost. Also the expected cost
is decreasing since as the shifts progress the accuracy increases and consequently the
number of misclassifications decreases.
The next logical step is to look at the accumulated cost over all shifts. This gives us for
c = 0.9 the figure 5.7.
We can clearly see that the accumulated cost is minimal for p = 0.3, so what we have
found is the optimal fraction value pmin given a cost ratio c.
Lastly, let’s plot this optimal fraction value for different values of c. This gives figure
5.8. The right figure shows the saving in accumulated cost when using US instead of RS
given a cost ratio. Especially in the realm of a miss classification inducing three times
the cost of an additional label (c = 0.75) is the cost reduction most significant. In the
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Figure 5.7: Plot of the accumulated cost
over all twenty shifts as a
function of the fraction value p
for c = 0.9. We see that the ac-
cumulated cost is minimal for
p = 0.3.

Figure 5.8.: Plot of the optimal fraction value and minimal accumulated cost against the cost
ratio c. The minimal accumulated cost is the accumulated cost associated with
pmin. We, once again, see US outperforming RS.
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left figure we also observe the optimal fraction value rapidly increasing as the cost ratio
exceeds a threshold.

Overall, this allows us to gauge how many samples to label per shift, such that it mini-
mizes the accumulated cost over 20 shifts given a cost ratio. Hence, the active learning
framework used on the real-world data is completely determined with well performing
query strategies (figure 5.3) and an approach to fine tune the fraction value.

5.3. Auxiliary pool

An alternative to active learning, with the goal of high label efficiency, is to generate
an auxiliary pool using a (strongly) simplified labeling protocol. The hope is that after
manipulating the auxiliary pool it is still capable of generalisation. This approach is
beneficial if large quantities of labeled data are required.
In this section we use the techniques of chapter 3 to manipulate the auxiliary pool of our
real-world data, such that it “solves” the classification problem that the primary pool
poses.
In chapter 3 we discussed three possible approaches.
The first approach (section 3.4) is to allow the classifier to put less emphasis on some
samples that are especially difficult to correctly predict. Thereby, we hope to eliminate
the incorrect samples from the training pool.
The second approach (section 3.2) utilizes the much larger auxiliary pool to learn a
sparse data encoding. By using the learned dictionary(encoding) to encode the primary
pool we hope that the primary pool generalises better.
The third approach (section 3.5) tries to directly correct as many incorrect labels of the
auxiliary pool as possible. Afterwards we treat the auxiliary pool as if it was perfectly
labeled.

5.3.1. MLP with adapting sample weights

We allow the classifier to discard some samples by allowing an MLP to learn every
sample’s training weight. The training weight determines how much a sample’s loss
contributes. The details of the approach are outlined in section 3.4.
The MLP consists of one fully connected, hidden layer with ReLU activation function
and an output layer with ten nodes and softmax activation. The general loss of a classifier
with trainable weights is given in eq. (3.38) and it obviously depends on the vector of
sample weights w and on the classifier’s parameter vector θ. Since we use coordinate
descent for optimization we are required to choose proper step sizes for optimization
w.r.t. θ and w.r.t. w. We also have to choose the regularisation parameter λ1 > 0 that
punishes a lowering of a sample’s training weight. The difficulty lies in choosing proper
values for these hyperparameters.

For the results presented in table 5.1, the optimizer w.r.t. θ or w is Adam, λ1 = 0.5 and

96 CHAPTER 5. RESULTS ON REAL-WORLD DATA



5.3. Auxiliary pool

[%] Peak test accuracy at # of steps = 1500 # of steps = 5000

constant train accuracy test accuracy train accuracy test accuracy
weights 84.2 ± 0.19 90.4 ± 0.61 91.7 ± 0.048 76.1 ± 0.35

Peak test accuracy at # of steps = 4000 # of steps = 6000

adapting train accuracy test accuracy train accuracy test accuracy
weights 80.9 ± 0.31 92.6 ± 0.26 82.4 ± 0.10 92.4 ± 0.29

# weights < 0.1 # weights > 0.9 # weights < 0.1 # weights > 0.9
20.7 ± 0.19 78.2 ± 0.17 19.8 ± 0.22 79.6 ± 0.21

Table 5.1.: Training a MLP with poorly labeled, auxiliary pool and testing on the perfectly
labeled, primary pool. We compare the accuracy gain when allowing the MLP to
learn the sample weights. It is noteworthy that the MLP with adapting weights
does not overfit.

step sizes are ηθ = 10−4, ηw = 5 ⋅ 10−4.
We find an increase in test accuracy of ≈ 2% by allowing the classifier to learn sample
weights.
It also discards (weight less than 0.1) about ≈ 20% of the samples as indicated by
the last row of the table. It is also interesting to note that almost no samples have
weights between 0.1 and 0.9. This shows how well regularizing with an L1-norm works
for learning a sparse training weight vector. This is crucial since samples are either
incorrect and should not contribute or are correct and should contribute. There is no
in-between.
Finally we note that, the MLP with adapting weights seems to overfit much less compared
to the MLP with constant and equal sample weights. To see this, we establish that in the
second column of table 5.1 the MLP with non-trainable weights reaches a test accuracy
of 76.1± 0.35% despite a much higher training accuracy of 91.7± 0.048%. In contrast to
that, the MLP with trainable weights reaches a training accuracy of 82.4 ± 0.10% and a
higher test accuracy of 92.4 ± 0.29.
This shows that by letting the MLP effectively neglect ≈ 20% of the training data, it
generalises better, meaning that it discards the samples with incorrect labels. We also
note that the training accuracy is much lower, due to the fact that, again ≈ 20% of the
training data, doesn’t actually participate in the training.

5.3.2. Dictionary learning

We deploy the auxiliary pool for learning a sparse representation of the real-world data.
Then, we use the learned dictionary to transform the primary pool into a sparse format.
By using the much larger auxiliary pool for learning a suitable encoding we hope to im-
prove the primary pool’s ability to generalise. The details of this approach are described
in section 3.2.

We differentiate between three scenarios. In the first, we neither use the auxiliary pool
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nor dictionary learning. In the second, we use dictionary learning but not the auxiliary
pool. In the third, we use the auxiliary pool for learning the dictionary and afterwards
transform the primary pool with the dictionary.
To compare in which scenario the primary pool generalises best, we estimate the test
accuracy of five different classifiers. We estimate the test accuracy by splitting the
primary pool into a 200 samples large training pool and use the remaining 142 samples
as test data. We repeat this procedure 20 times and estimate the average and standard
deviation.
This produces the results given in table 5.2 with parameters given in the corresponding
parameter sheet. For the L1-regularization parameter we choose λ = 1. This parameter
determines how strongly the data is forced into a sparse representation.

Examining the results of table 5.2 we find a slight improvement in the test accuracies
in scenario c) compared to b). This means, that using the auxiliary pool for learning
the dictionary is beneficial to learning the dictionary from the primary pool. However,
both approaches are far inferior to scenario a), where we don’t use dictionary learning
and leave the primary pool in its original representation. Dictionary learning does not
seem to work well on this dataset.
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a) b) c)
[%] no DL DL without auxiliary pool DL with auxiliary pool

linear 93.6 ± 1.62 87.1 ± 2.85 87.5 ± 1.81
polynomial 93.2 ± 1.61 79.7 ± 2.84 81.5 ± 3.46
rbf 91.5 ± 1.58 84.4 ± 1.61 86.0 ± 1.67
RFC 94.5 ± 1.37 84.2 ± 2.46 84.5 ± 3.21
MLP 94.2 ± 1.22 88.0 ± 2.79 88.1 ± 2.64

Table 5.2.: Test accuracy of five classifiers on the primary pool which is split into 200 training
and 142 test samples. In each column the primary pool is in a different represen-
tation, in a) is the unmodified primary pool, in b) the transformed primary pool
using a dictionary learned by the primary pool and in c) the transformed primary
pool using a dictionary learned by the auxiliary pool. Given is the mean of 20 runs,
± one standard deviation.

Parameter sheet for table 5.2

Datasets: Primary pool (1), auxiliary pool (2)

Dataset Number 1 2
Number of samples 342 6703
Number of features 36 36
Number of classes 9 10a

Number of training samples 200 -
Number of test samples 142 -
Number of runs for averaging 20 -

Classifier:

• SVM with linear kernel function

• SVM with polynomial kernel function

• SVM with rb kernel function

• RFC with 100 estimators

• MLP with one (fully connected) hidden layer with 100 nodes and ReLU acti-
vation, output layer with 10 nodes and softmax activation

aThis is not a typo. Due to the small size of the primary pool, there is one (less frequent) class not
present at all.
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5.3.3. Label correction

In this section we apply the four label correction techniques from section 3.5 to correct
the labels from the auxiliary pool. Afterwards we treat the auxiliary pool as if it were
perfectly labeled. We estimate the test accuracy of different classifiers trained on the
auxiliary pool before and after correction. We use the primary pool, which is perfectly
labeled, to estimate test accuracies. We expect to see an improvement in the test accu-
racies if the label correction algorithms successfully correct enough labels.
By using the primary pool for estimating the test accuracy, we estimate the performance
of the different classifiers on the actual classification problem.
The four label correction algorithms are NNC, ADE, CC and BCC. The parameters of
the label correction methods are as follows:

• NNC: K = 8, p = 0.5

• ADE: Nepoch = 50,Nera = 150, ηω = 10−5, ηp = 10−3, ε = 10−5

• CC: A = 25

• BCC: −

The before- and after-label correction test- and train accuracies are given in table 5.3
for the different label correction methods and five different classifiers. The parameters
of the classifiers are given in the parameter sheet for table 5.2.

Let’s go through the results of the different label correction algorithms one by one.
The novel NNC performs very well. NNC substantially increases the test accuracy of
all five classifiers. When solely relying on the the auxiliary pool as training data we are
able to reach a test accuracy of almost 95% by using NNC. As an example, when we
choose a linear SVM as classifier we see an increase in test accuracy of above 16%, in
case of a RFC we find an increase in test accuracy of almost 20%. This is especially
impressive when we consider the simplicity of NNC and its robust hyperparameters as a
consequence thereof. We recall that NNC managed to deliver impressive results on the
toy datasets (section 4.4.1) with the same hyperparameters as chosen here.
ADE delivers, after NNC, the second best performance. It also manages to increase the
test accuracy of all five classifiers significantly. These positive results strengthen the
believe that ADE is a powerful but non-robust label correction algorithm that suffers
from hyperparameter optimisation. We already noted that, when applying ADE to
toy datasets (section 4.4.2), it struggled for two out of the three datasets for which its
hyperparameter were not fine-tuned. However, in this section and with properly chosen
hyperparameter, ADE, yet again, manages to produce good results.
CC is the weakest performer of the four label correction algorithms. While it still delivers
noticeable test accuracy increases for four out of the five classifiers, it is the only label
correction algorithm that leads to a decrease in test accuracy. In case of the MLP test
accuracy decreases. Overall, these below average results, when compared to the other
label correction algorithms, is contrary to the results of section 4.4.3 where CC has
proven to be the second best algorithm.
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BCC manages to increase test accuracy for all classifiers, even though the increase is
negligible in case of the MLP. Albeit, an increase of, e.g., ≈ 9% in case of the RFC is
impressive, considering BCC does not require any hyperparameters. This makes it truly
an out-of-the-box algorithm.

As a remark, applying NNC to the auxiliary pool leads to a label change of 16.7%
of all samples in the auxiliary pool. The auxiliary pool with the label configuration
induced by NNC delivers the highest test accuracy on the primary pool (throughout all
classifiers!). As a consequence, it is the label configuration that is the most aligned with
the primary pool, with perfectly labeled data. This label configuration is the closest we
get to ”perfectly labeled“. Therefore, our best estimate for the number of incorrect labels
in the original auxiliary pool is equal to the number of changed labels when applying
NNC, which was 16.7% of all samples in the auxiliary pool.
In figure 5.9 we take a closer look at this label configuration, the label configuration that
results from label correction using NNC.
The upper two plots display the confusion matrix of a linear SVM on the primary pool.
We can nicely see the increase in test accuracy by using NNC. We completely eliminate
the mismatches where the true label is ”machine five“ or ”machine four“. In the lower
two plots we can see how NNC achieves this - by introducing homogeneity in certain
regions in data space. E.g., before label correction the bottommost cluster is cluttered
with additional labels “machine 4”, “machine 3”, “machine 2” and “machine 1”. After
label correction this cluster is more homogeneous and the mismatches for samples with
true label “machine 5” disappear in the confusion matrix b).

Overall, it is impressive how well label correction and especially NNC perform. After
all, a linear SVM trained on the auxiliary pool with corrected labels using NNC is able
to reach a test accuracy of almost 95% on the primary pool. Even though the labels of
the auxiliary pool are obtained without human effort whereas the labels of the primary
pool are labeled by a human.

CHAPTER 5. RESULTS ON REAL-WORLD DATA 101



5.3. Auxiliary pool

a) b)
original labels corrected labels

[%]↘ train accuracy test accuracy train accuracy test accuracy

NNC
linear 90.5 78.6 95.7 94.7
poly 91.7 78.1 97.6 92.7
rbf 90.1 81.9 96.5 94.4
RFC 100.0 73.1 ± 0.48 100.0 93.0 ± 0.32
MLP 86.2 ± 0.19 88.3 ± 0.38 93.2 ± 0.13 93.8 ± 0.19

ADE
linear 90.5 78.6 98.4 ± 0.38 87.7 ± 1.73
poly 91.7 78.1 98.6 ± 0.29 87.8 ± 1.79
rbf 90.1 81.9 97.2 ± 0.61 90.1 ± 1.49
RFC 100.0 73.1 ± 0.48 100.0 88.2 ± 1.93
MLP 86.2 ± 0.19 88.3 ± 0.38 94.6 ± 1.07 92.4 ± 0.94

CC
linear 90.5 78.6 94.8 ± 0.47 84.0 ± 1.49
poly 91.7 78.1 97.8 ± 0.26 83.2 ± 1.35
rbf 90.1 81.9 97.2 ± 0.27 83.5 ± 1.37
RFC 100.0 73.1 ± 0.48 100.0 83.4 ± 1.72
MLP 86.2 ± 0.19 88.3 ± 0.38 93.2 ± 0.58 83.6 ± 1.69

BCC
linear 90.5 78.6 89.7 ± 0.36 83.9 ± 0.82
poly 91.7 78.1 93.4 ± 0.30 83.5 ± 0.83
rbf 90.1 81.9 91.4 ± 0.24 87.1 ± 0.80
RFC 100.0 73.1 ± 0.48 100.0 82.1 ± 1.52
MLP 86.2 ± 0.19 88.3 ± 0.38 86.5 ± 0.36 88.4 ± 0.74

Table 5.3.: Accuracy of different classifiers before- and after label correction. Column a) corre-
sponds to classifiers trained on the unchanged auxiliary pool and column b) on the
auxiliary pool after label correction using NNC, ADE, CC and BCC. The primary
pool is used as testing data. The parameters of the classifiers are (again) given in
parameter sheet for table 5.2. Empirical standard deviations that are not given are
≤ 10−10. Given is the mean of 20 runs, ± one standard deviation.
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a) b)

c) d)

Figure 5.9.: Confusion matrix of label predictions on test data and labels of auxiliary pool be-
fore and after label correction using algorithm 20. Subfigure a) shows the confusion
matrix of the label predictions on the primary pool where the label predictions are
obtained using a linear SVM trained on the auxiliary pool with original labels,
similarly subfigure b) uses the same classifier trained on the auxiliary pool with
corrected labels. Plot c) and d) is a 2D-representation of the auxiliary pool gener-
ated using TSNE with original and corrected labels, respectively.
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5.4. Guideline

In this section we talk about reference points on, if and how to use active learning on
other datasets and whether or not to exploit an auxiliary data source.

5.4.1. Active learning

Q: When should you consider using active learning?
A: You should consider active learning whenever it is not possible/desirable to label
all data. This might be due to the sheer amount of unlabeled data (big data) or due to
a lack of resources (not enough man power, limited evaluation facilities, ..). Bottom
line: Whenever labeling is expensive and one can afford not using each sample. The
smaller the ratio of samples you are able to label, the more beneficial active learning
can be.

Q: What are the up- and downsides of active learning?
A: The upside is that, if you choose the subset to labels wisely (by using active
learning), you can be rewarded with a much better performing classifier, than if you
choose the subset randomly. The major downside of active learning is the risk of
ending up with a subset that suffers severely from sampling bias. Meaning that it
will not generalise well as it is not representative of all data.

Q: Pool-based or on-line active learning?
A: On-line active learning certainly has advantages - there is no unlabeled pool,
exploration can be built-in using coin toss and it may be easier to implement in certain
environments. Still, pool-based active learning seems more robust with larger label
complexity decreases overall. At the end, this is highly dependent on the problem at
hand.

Q: Which query strategies to use?
A: It is beneficial to combine several query strategies together using ALBL or DEAL.
Uncertainty sampling should always be one of them, as it performs well later on.
Good explorative options are RS, NNC or ReS (space = ’labeled’, goal = ’low’). You
may want to add CBS for a balanced training dataset.

Q: My data is very high-dimensional. Will this lead to problems with,
e.g., NNC?
A: Yes and no. If your data is very high-dimensional the concept of nearest neigh-
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bours will lose meaning (curse of dimensionality) but you are free to use an alternative
representation with reduced dimensions for NNC while using the full representation
to train the classifier. NNC does not depend on the classifier. The same argument
holds true for ReS and MdS.

5.4.2. Auxiliary data source

Q: When should you consider utilizing an auxiliary data source?
A: If you know beforehand that training your classifier to a sufficient degree will
require lots of labeled data despite using active learning then an auxiliary data source
is appropriate. The reason is, that we assume that a first (imperfect) label estimate
is cheap. This makes the requirement of many labeled samples less cumbersome. Of
course, this will lead to a subpar label accuracy which may not be a problem though.
As we may be able to correct (most) of the incorrect labels using label correction
methods.

Q: Are you able to generate labels cheaply?
A: To create an auxiliary pool you need a cheap way of labeling data. Cheap enough,
so that you are able to label enough data while still maintaining a correct label rate
of at least 50% (better 60%). This may be, e.g., replacing the human by an artificial
entity or simplifying the labeling-routine in some crucial steps.

Q: Can you modify your classifier to support learn-able weights?
A: A classifier should be able to learn sample weights, if the loss it optimizes, is using
M-estimation and the learning procedure uses some form of gradient descent (or 2nd
order techniques).
As a side note: The weight vector should be L1-Regularized, since ideally all incor-
rectly labeled samples are discarded while the weight of all correctly labeled samples
is unchanged. Hence, a sparse weight vector is favorable.

Q: Will label correction methods work on my data?
A: All methods seem to perform best when the data to correct has a false label rate
between 0.2 and 0.4. Of course this quantity may be unknown and quite hard to
gauge.

Q: Which label correction to choose?
A: NNC (almost) always performed very well and requires only few, quite intuitive
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hyperparameters that need to be set. CC and BCC also only require one or no hyper-
parameter, respectively, making them easy to use. Unfortunately they both perform
poorly in the regime of low false label rates (β ≤ 0.1) which may not be excludable
beforehand. ADE’s performance strongly depends on well chosen hyperparameters
making it difficult to use whilst returning only average label correction performance.

Q: What if my data is high-dimensional?
A: If your data is very high-dimensional the approaches NNC, CC and BCC, as
they are defined, may not work well due to the fact that they all rely on Euclidean
distance as a similarity measure. Therefore, it is then necessary to replace the sim-
ilarity measure by one that has proven meaningful on your data despite its high-
dimensional nature. Alternatively reducing dimensions beforehand (only for the label
correction/pre-processing part) may be a valid option.
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In this final chapter we will summarize the findings and access the overall usefulness of
the involved algorithms. Before discussing the results, we quickly recap.

The goal of this thesis can be outlined very easily: We want to decrease the cost associ-
ated with labeling data, labeled data that is required for supervised classification.
There are two major approaches for cost-cutting. We either try to label less or label
more cheaply. The task of reaching similar classifier accuracy with less labeled data is
tackled by active learning. In the second approach, we decrease labeling cost by labeling
more cheaply using an auxiliary data source. This comes at the cost of an inferior label
accuracy. We discuss methods of manipulating this flawed data such that it becomes
useful again. We put emphasis on label correction where we try to correct as many false
labels as possible.

We start of discussing the results by focusing on active learning, specifically pool-based
active learning. In pool-based active learning a, so called, query strategy proposes the
sample to label next out of the pool of unlabeled data that is currently available. Based
on the criteria a query strategy uses to choose a certain sample, query strategies can
be allocated into three categories, into representative-, informative- or performance-
based query strategies. When applying pool-based active learning to artificial- and toy
datasets, it manages to decrease label complexity significantly, e.g., in case of the Wine
dataset by ≈ 65%. Label complexity counts the number of labels required to reach a cer-
tain accuracy. I.e., in case of the Wine dataset, to reach the same accuracy of a classifier
trained on 35 samples chosen by pool-based active learning, one needs to label at least
100 randomly chosen samples. Pool-based active learning delivers equally impressive
results when applied to real-world data. It manages to reduce label complexity by up to
60%, more than halving the labeling efforts. Further, we find that even though numerous
query strategies are introduced, only few query strategies are sufficient to continuously
outperform all remaining ones. These query strategies are US as the informative-based-
and NNC as the representative-based query strategy. As as result, the top of the line
approach to pool-based active learning is using DEAL to dynamically combine RS, US
and NNC. RS is added as a fallback query strategy, ensuring that the combined approach
performs as least as good as choosing samples randomly.
As part of the work a python-package titled “poolAL”, that implements all discussed
query strategies in an easy-to-use fashion, was created and made accessible for everyone.

Finally, we discuss the results of utilizing an auxiliary data source that frequently mis-
labels samples. We focus on using, in total, four different label correction algorithms to
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correct flawed samples. When applied to artificially falsified toy datasets, the algorithms
NNC and CC manage to deliver impressive results. E.g., in case of the EMNIST-Digits
dataset both are able to almost completely invert the falsification process and retrieve
the original labels, even when half the data is incorrect. Further, we find that label
correction algorithms can lead to a higher classifier test accuracy after label correction
even when no data is previously falsified. When applied to real-world data, all four label
correction algorithms manage to increase the test accuracy of different classifiers that
are trained on the auxiliary data. The novel NNC outperforms all other label correction
algorithms for every classifier significantly. E.g., training a RFC on the auxiliary data
leads to a test accuracy of 73.1±0.48%. Using NNC on the auxiliary data and afterwards
training the same RFC on the auxiliary data reveals a test accuracy of 93.0± 0.32%, an
increase of almost 20%. Additionally, by using NNC a linear SVM is able to reach a test
accuracy of almost 95%. A test accuracy that is estimated on data that was labeled by
a human, whereas the labeling of the auxiliary pool was not performed by a human and
obviously NNC does not involve human effort. Again, as part of the work, a python-
package that implements the different label correction algorithms was created and made
accessible for everyone.

Overall, both active learning and an auxiliary data source can prove to be an effective
way of reducing labeling efforts. Considering that this is relevant to any machine learning
practitioner unable to label all available data, the topic concerns many fields, especially
in real-world application.

In the future both sections can be extended by additional query strategies or label cor-
rection algorithms as there is still a cornucopia of ideas available in often rather unknown
papers. Additional testing and application to various data is necessary to better under-
stand the different query strategies/label correction methods and their respective fields
of application.
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A. Introduction into supervised-ML

Typically, a computer determines an output based on the input and a set of rules.
Depending on the connection between input and output, finding a satisfactory set of
rules can be problematic.
ML is concerned with finding such a set of rules for you.
Supervised-ML determines a set of rules based on corresponding pairs of input and
output. Therefore, we have to provide a sufficient number of such pairs. This data is
called training data.
After supervised-ML has established a mapping between the input-output pairs from the
training data, we can use this mapping to determine the output based on an arbitrary
input. In the spirit of “a picture is worth a thousand words”, we summarize supervised-
ML in figure A.1.

Figure A.1.: Summarizing supervised-ML. Supervised-ML uses the training data to learn a
mapping between input and output. Then, the learned mapping can be used to
compute the output of an arbitrary input.
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A.1. Example: Linear regression

Q: How to find a good set of rules given the training data?
A: In short: Loss optimisation
We assume that F is the model with parameters θ that maps input to output. Note that
choosing an appropriate model is non-trivial. Then, we can use the model to make a
prediction

yprediction = F(x,θ). (A.1)

In the case of training data the “true” output is known. Thus, we choose a measure to
quantify the mismatch between prediction and truth - the lower the better. We call this
measure loss and denote it by

L(yprediction, ytrue ≡ y) ≡ L(x, y,θ). (A.2)

Ideally, we are interested in the expected loss, so

L (θ) = Ex,y[L(x, y,θ)] (A.3)

which we can estimate using Monte-Carlo integration, resulting in

L̂ (θ)∝ ∑
{x,y}∈ training data

L(x, y,θ). (A.4)

The loss constrained to the training data is a functional assigning every point in param-
eter space a scalar value. By minimizing the constrained loss, we find good parameters
for our model, i.e.,

θ∗ = arg min
θ

L̂ (θ). (A.5)

Finally, as an example for loss optimisation let’s take a look at linear regression. The
example then concludes this brief introduction.

A.1. Example: Linear regression

Task: Fit a line through one-dimensional data points

Parametric model: yprediction ∶= F (x,θ = (m,b)T ) =mx + b

Squared-error loss: L(yprediction, y) ∶= (yprediction − y)2

Mean-squared-error loss: L̂ (m,b) ∶= 1
L ∑
{x,y}∈ training data

((mx + b) − y)2 where L is

number of training pairs

As an example we randomly draw 50 samples from ∝ Uniform([0,5]), we then let y = 0.5x
plus some random Gaussian noise.
Figure A.2 displays the MSE constrained to the 50 samples in parameter space. Further-
more, two explicit models corresponding to two points in parameter space are plotted in
figure A.3.
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A.1. Example: Linear regression

Figure A.2.: MSE assigns every point in parameter space a scalar value. Note that it is small
in the region around m = 0.5, b = 0.

Figure A.3.: Linear regression on toy example. The two lines correspond to the two points in
parameter space in figure A.2. Line 2 results in a smaller MSE and also visually
fits the data better.
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