
Bachelor-Thesis:
Truncated Lieb-Liniger model with

quasi-spin 1/2

Simon Bachhuber, Matrikelnummer: 1768044

Submitted in June 2018

UNIVERSITY REGENSBURG
Physics faculty

Supervised by Prof. Dr. Klaus Richter



Contents

Contents

1. Introduction 3

2. General concepts 4
2.1. Most general N -particle Hamiltonian with two-particle interaction . . . . 4
2.2. Lieb-Liniger model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.3. Truncated Lieb-Liniger-Model . . . . . . . . . . . . . . . . . . . . . . . . . 6

3. Three-site-case and five-site-case for arbitrary total momentum L with spin
zero 6
3.1. Five-site-case for arbitrary L and parabolic dispersion relation . . . . . . 9

4. Five-site-case for arbitrary L and linear dispersion relation 13
4.1. Gap-energy and -position of first and second exited energy . . . . . . . . . 13

5. Three-site-case for arbitrary L with spin 1/2 and linear dispersion relation 19
5.1. Example: Hamiltonian matrix for (N ,L) = (2,1) and (3,2) . . . . . . . . 22
5.2. Critical point . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
5.3. Symmetries/constants of motion . . . . . . . . . . . . . . . . . . . . . . . 23
5.4. Degeneracy for L=0 and odd number of particles . . . . . . . . . . . . . . 25

5.4.1. Kramers theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
5.5. Full spectrum for N = 2, 3, 4, 5 . . . . . . . . . . . . . . . . . . . . . . . 27
5.6. Occurrence of energy crossings with fixed N ,L,P . . . . . . . . . . . . . 30

5.6.1. Product of spin operators as an integral of motion . . . . . . . . . 30
5.7. Approximation of the energies of the five-site-case via the three-site-case . 31
5.8. Solution of the n-site-case with the three-site-case for N = 2,L = 0 . . . 32
5.9. Attractive and repulsive case due to spin swap symmetry . . . . . . . . . 34
5.10. Thermodynamics of the system . . . . . . . . . . . . . . . . . . . . . . . . 37

5.10.1. Heat capacity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
5.10.2. Chemical potential . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

6. Conclusion 41

A. Appendix 42

2



1. Introduction

1. Introduction

Solving Many-particle systems is a highly complicated task in quantum mechanics. Ex-
actly solving the Schrödinger equation of one atom of an element of the periodic table
is only possible for hydrogen. The next “simplest” element, Helium, consisting of only
two electrons, protons and neutrons, is already unsolved.
Therefore, approximations are needed. One example is Mean-field-theory, where one
approximates an interacting Many-particle system as a system of free particles in an
external field.
Another example is to reduce the system’s, often indefinitely large, phase space to a
phase space of finite size by some form of truncation.
Obviously, this cutoff comes at the cost of unconsidered phase space but it still might
reveal properties or tendencies of the actual system.
In this thesis the model of interest is the Lieb-Liniger model and a (strongly) modified
version of it.
The Lieb-Liniger model is an example of a quantum integrable model, a model that is
solvable with the Bethe Ansatz, and one can, using the Yang-Baster relation, get the
“transfer matrix” to then generate an infinite set of conserved quantities[7].
It was introduced in 1963, roughly 40 years after the birth of quantum mechanics, by
Elliott H. Lieb and Werner Liniger.
Despite its simplicity, it is a fascinating Many-body system of a one-dimensional gas of
Bose particles interacting via a repulsive delta-function potential[6].
In the same paper Lieb and Liniger solved this quantum integrable model using the
Bethe ansatz.
For this matter, the Bethe ansatz was invented 1931 by Hans Bethe in order to find the
exact eigenvalues of the one-dimensionial antiferromagnetic Heisenberg model.
The model gained popularity for one crucial reason. It was the only exactly solvable
model with a “realistic” two-body potential, a potential that actually exists in a gas,
apart of Girardeau’s model. Girardeau showed that a gas of impenetrable bosons has
the same energy spectrum as a gas of noninteracting fermions[6].
In this thesis we first look at a momentum-truncated version of the Lieb-Liniger model
with parabolic dispersion relation and then replace the parabolic- by a linear dispersion
relation. A necessary tool for this task is second quantization, hence the first chapter is
a very brief overview of it.
The major part of the thesis is about a truncated Lieb-Liniger model with linear disper-
sion relation and quasi-spin 1/2.
This is a possible approximation of a bosonic gas with a two-band structure in the en-
vironment of a crossing in the system’s dispersion relation.
In any case the strategy is to first establish an enumerated list of all the allowed states
of the system, then to display the Hamiltonian as a matrix using latter list as a basis
and then diagonalize it.
Only the calculation of the Hamiltonian in second quantization is done analytically, the
remaining work is of numerical nature and performed with Wolfram Mathematica.
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2. General concepts

2. General concepts

2.1. Most general N -particle Hamiltonian with two-particle interaction

Let’s assume we have a Hamiltonian given by

H = H0 + V =
N∑
α=1

tα +
∑
α<β

Vαβ (1)

where α and β label the individual particles.
We take a look at the single-particle part of the Hamiltonian first. We can rewrite

H0 =
∑
α

∑
i

|i〉α 〈i|α tα
∑
j

|j〉α 〈j|α

=
∑
i,j

〈i|t|j〉 a†iaj

=
∑
i,j

tija
†
iaj ,

using the known relation for completeness if the chosen basis is complete and orthonormal∑
i

|i〉 〈i| = 1

and also the important equation

N∑
α=1

|i〉α 〈j|α = a†iaj

valid for arbitrary N and only in the symmetric Hilbertspace of bosons. In the latter
equation a†i and ai are the creation- and annihilation-operators

a†i |Ω〉 = |i〉α , ai |i〉α = |Ω〉 , ai |Ω〉 = 0.

Here |Ω〉 is the zero-particle-state ket. They satisfy the (commutator) relations

nk ≡ a†kak, [ak, a
†
k′ ] = δk,k′ , [ak, ak′ ] = [a†k, a

†
k′ ] = 0. (2)

For a proof see, e.g., [1]. In the same fashion one can show that for the two-particle-
interaction part of the Hamiltonian you may write

V =
1

2

∑
i,j,k,m

〈i, j|V |k,m〉 a†ia
†
jamak

=
1

2

∑
i,j,k,m

Vijkma
†
ia
†
jamak.

Thus, the entire Hamiltonian of a N -particle system with two-particle interaction in
second quantization is given by

H =
∑
i,j

tija
†
iaj +

1

2

∑
i,j,k,m

Vijkma
†
ia
†
jamak. (3)
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2. General concepts

2.2. Lieb-Liniger model

We discuss moving particles in one dimension with periodic boundary conditions, i.e.,
on a ring of length R. Furthermore there is a very short-ranged coupling, modeled by a
contact potential, allowing them to bounce off of each other or being attracted and thus
stick to each other. Strictly speaking, only the repulsive case is the Lieb-Liniger model.
The Lieb-Liniger model is interesting since a quantum phase transition might occur.
Quantum phase transition describes a phase transition between different quantum phases
at zero temperature. It describes a sudden change of the ground state wave function of
a Many-body system[8].
Quantum phase transitions occur in the limit N →∞ but some indications are observ-
able at finite particle numbers. For instance, a sudden change or discontinuity in the
first or higher derivatives of the energy as a function of an external parameter, in our
case the strength of the coupling, can indicate a quantum phase transition[9].
Another example is the vanishing of the Bogoliubov excitation energy, i.e., at the phase
transition the Bogoliubov approximation is never valid and breaks down[10]. A visible
effect of this phenomena is a narrowing spectrum and an energy collapse on the ground
state energy.
The point, in the coupling constant, at which the quantum phase transition most likely
occurs, due to the indicator’s implication, is from now on referred to as the critical point.
The Hamiltonian of the Lieb-Liniger model with N particles in first quantization is of
the form

H = − ~2

2m

N∑
α=1

∂2

∂x2
α

− 2Rα
∑

α 6=β,α<β
δ(xα − xβ) = H0 − αV.

Going into second quantization using plane waves as a basis,

〈x|ψk〉 = ψk(x) =
1√
R
ei

2π
R
kx, k ∈ Z

〈k|k′〉 =

∫
dxψ∗k(x)ψk′(x) = δk,k′ , ∀k, k′ ∈ Z (4)

with the Kronecker delta defined as

δk,k′ =

{
1 k = k′

0 else
,

we then must calculate

tkk′ = 〈k|t|k′〉 =
−~2

2m

1

R

∫
dxe−i

2π
R
kx ∂

2

∂x2
ei

2π
R
k′x =

~2

2m

(
2πk′

R

)2

δk,k′ ,
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3. Three-site-case and five-site-case for arbitrary total momentum L with spin zero

vklmn = 〈k, l|V (x, x′)|n,m〉

=
−2Rα

R2

∫ ∫
dxdx′e−i

2π
R
kxe−i

2π
R
lx′δ(x− x′)ei

2π
R
nxei

2π
R
mx′

=
−2Rα

R2

∫
dxei

2π
R
x(n+m−k−l)

= −2αδk+l,m+n.

Therefore the Hamiltonian in k-space is given by

H =
−~2

2m

∑
k,k′

−
(

2πk′

R

)2

δk,k′a
†
kak′ −

2Rα

2R

∑
k,l,m,n

δk+l,m+na
†
ka
†
l aman (5)

=
~2

2m

(
2π

R

)2∑
k

k2a†kak − α
∑

k,l,m,n

δk+l,m+na
†
ka
†
l aman. (6)

2.3. Truncated Lieb-Liniger-Model

In general, in the Hamiltonian (6) we have to sum over all possible values for k, being
all the integer numbers. This is too difficult of a task, hence we introduce a cut-off at
a certain k-mode - the higher the k-mode the more accurate the approximation. The
error increases when the system goes to high energies since the higher k-modes would
have bigger significance.

3. Three-site-case and five-site-case for arbitrary total
momentum L with spin zero

First, we briefly discuss the easiest case of the truncated Lieb-Liniger-Model, by only
allowing for values of ±1, 0 for the k-mode of a single-particle. This is strictly following
Benjamin Geiger’s approach of the 3-site and 5-site model given in the Mathematica
sheet[2].
This was mostly done to understand the numerical procedure and check, if the obtained
results matched the ones from Benjamin. Another reason was to get familiar with
quantum phase transitions since, for this model, it was already known to have a critical
point.
We assume our particles to be bosonic of spin zero, so there is no spin degree of freedom
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3. Three-site-case and five-site-case for arbitrary total momentum L with spin zero

and set R = 2π and ~2
2m = 1. The Hamiltonian of the system then is

H =
∑

k=±1,0

k2a†kak − α
∑

k,l,m,n=±1,0

δk+l,m+na
†
ka
†
l aman (7)

= a†1a1 + a†−1a−1 − α
( ∑
k=±1,0

a†ka
†
kakak + 4

(
n1n0 + n−1n0 + n1n−1

)
+ 2(a†0a

†
0a1a−1 + a†1a

†
−1a0a0)

)
= a†1a1 + a†−1a−1 − α

( ∑
k=±1,0

a†k(aka
†
k − 1)ak + 4

(
n1n0 + n−1n0 + n1n−1

)
+ 2(a†0a

†
0a1a−1 + (a†0a

†
0a1a−1)†)

)
= n1 + n−1 − α

( ∑
k=±1,0

(n2
k − nk) + 4

(
n1n0 + n−1n0 + n1n−1

)
+ 2(a†0a

†
0a1a−1 + (a†0a

†
0a1a−1)†)

)
= h0 − α

(
hdiag + hoffdiag + h†offdiag

)
.

For this derivation we used the definition of the occupation-number-operator and the
bosonic commutator relation given in equation (2).
In order to diagonalize this Hamiltonian we need to choose a basis first

|n−1, n0, n1〉 = |n−1 = n1 − L, n0 = N − 2n1 + L, n1〉 ≡ |N,L, n〉 . (8)

We can see that a unique state was initially characterized by three occupation numbers,
but it is reducible to just one due to the fact that we have two integrals of motion given
by the number of particles N and the overall momentum L of the system

N = n1 + n0 + n−1,

L =
∑

k=0,±1

knk = n1 − n−1. (9)

Now, we may check the action of the Hamiltonian on our basis using the known relations

a† |n〉 =
√
n+ 1 |n+ 1〉 , a |n〉 = n |n− 1〉 .

Starting with the off diagonal term

a†0a
†
0a1a−1 |n〉 =

√
n− L

√
n
√
N − 2n+ L+ 1

√
N − 2n+ L+ 2

|n1 − L− 1, N − 2n1 + L+ 2, n1 − 1〉
=
√
n− L

√
n
√
N − 2n+ L+ 1

√
N − 2n+ L+ 2 |n− 1〉 ,

7



3. Three-site-case and five-site-case for arbitrary total momentum L with spin zero

we can already see that the three-site-case with no spin is especially easy since only the
diagonal and first off-diagonal elements are unequal to zero. The whole Hamiltonian is
then given by

Hnm = 〈n|H|m〉 = 〈n|h0|m〉 − α
(
〈n|hdiag|m〉+ 〈n|hoffdiag|m〉+ 〈n|h†offdiag|m〉

)
= δn,m

(
2m− L− α

[
m2 −m+ (N − 2m+ L)2 − (N − 2m+ L) + (m− L)2

− (m− L) + 4
(
m(N − 2m+ L) + (m− L)(N − 2m+ L) +m(m− L)

)])
− δn,m−12α

√
m− L

√
m
√
N − 2m+ L+ 1

√
N − 2m+ L+ 2

−
(
δn,m−12α

√
m− L

√
m
√
N − 2m+ L+ 1

√
N − 2m+ L+ 2

)T
= δn,m

(
2m− L+ α

[
4mN − 6m2 + (N − 1)N

])
− δn,m−12α

√
m− L

√
m
√
N − 2m+ L+ 1

√
N − 2m+ L+ 2

− δm,n−12α
√
n− L

√
n
√
N − 2n+ L+ 1

√
N − 2n+ L+ 2.

Without loss of generality the total momentum L is greater or equal to zero and its
maximal value is - due to equation (9) - N . So, the last step is to figure out the range
of the allowed states, i.e., the minimal and maximal values of the occupation number n1

for a given N and L. This is simply

n1min = L, n1max = bN − L
2
c+ L. (10)

Therefore, our Hamiltonian is of the dimension bN−L2 c+1 and also has the same number
of eigenvalues.
Figure (1) is a plot of the energy difference of the exited states and the groundstate as
a function of the combined parameter αN . It’s convenient to not simply use α as the
varying value since the most interesting part of the plot is close to αN = 1. This is
motivated by results of the Bogoliubov approximation and it breaking down at αN = 1
[10]. Typically the energy spectrum narrows at this point before spreading out again.
We can clearly see that the energy spectrum narrows when αN reaches a certain point
close to one and that the energies tend to collapse on the ground state or at least get a
lot more dense. Both are indicators for a quantum phase transition.
In figure (1), the number of particles is fixed, but we can see the exact behavior for a
fixed α, as seen in figure (2).
In order to further investigate the properties of the system close to the critical αN , it is
beneficial to keep αN constant while varying the number of particles N . In other words,
we choose a value of αN in figure (1) and observe the energy differences while varying
the number of particles of the system.
To better visualize what happens to the plot (3) when going through different values of
αN , we choose a certain exited energy and display a contour plot as a function of αN
and N in figure (4).
We can see in figure (4) that as the number of particles increases the minimum in the
energy gap decreases and shifts closer to αN = 1.
This means that as the system gets bigger, i.e., the number of particles of the system

8



3. Three-site-case and five-site-case for arbitrary total momentum L with spin zero

0.0 0.5 1.0 1.5 2.0

0

10

20

30

40

50

æN

e
n
-
e
0

Figure 1: Energy difference narrows around the critical point and a strongly inhomoge-
neous density of states after the critical point αN = 1.
(N = 300, L = 0)

increases, a lower coupling constant is sufficient to reach the critical point, but not only
because N trivially increases in the coupling parameter αN .
It also implies that the system at the critical point is easier to excite since the excitation
energy lowers.
We will look at this phenomena more quantitatively in chapter 4.1.

3.1. Five-site-case for arbitrary L and parabolic dispersion relation

The next natural step is to expand the truncation, so to go from three to five sites. We
consider again the same Hamiltonian (7) as in the chapter before, but allow the values
of the k-mode to range from −2 to 2 instead of −1 to 1.
The most obvious difference when comparing figure (5) with (1) is the possible occurrence
of crossings in the excitation spectrum for fixed L and N .
Crossings are an indicator of a locally conserved quantity. In order to verify crossings
and thus exclude avoided crossings, we have to look closely at the crossing point. The
intersection one marked in figure (5) turns out to be an avoided crossing as we can see
in figure (6).
The intersection two also seems to be an avoided crossing as seen in figure (7). Since we
can not find any crossings, it is likely that this model doesn’t have any more integrals
of motion that we could exploit to reduce the systems phase space.
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3. Three-site-case and five-site-case for arbitrary total momentum L with spin zero

0.0 0.5 1.0 1.5 2.0

0

10

20

30

40

50

æN

e
n
-
e
0

Figure 2: Same behavior as in figure (1) when varying N .
(α = 0.005, L = 0, N = 30− 400)
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Figure 3: Energy difference while varying N and keeping αN fixed.
(N = 20− 300, L = 0, αN = 1.25)
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3. Three-site-case and five-site-case for arbitrary total momentum L with spin zero
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Figure 4: Energy difference between the first exited state and ground state (left) and
second exited state and ground state (right). Energy minimum shifting closer
to αN = 1 and getting lower with an increasing amount of particles.
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Figure 5: Plot of the energy difference for the 5-site-case with parabolic dispersion rela-
tion - two crossings are marked.
(N = 30, L = 0, nmax = 15)
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3. Three-site-case and five-site-case for arbitrary total momentum L with spin zero
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Figure 6: Zoom in near the crossing point one. No indication of unused integrals of
motion through this crossing since it is an avoided crossing.
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Figure 7: Zoom in near the crossing point two and the crossing turns out to be (again)
an avoided crossing.
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4. Five-site-case for arbitrary L and linear dispersion relation

4. Five-site-case for arbitrary L and linear dispersion relation

We now only change the parabolic dispersion relation in the Hamiltonian from last chap-
ter and replace it by a linear one, but leave everything else unchanged.
This has the advantage that we can compare the functional dependence on the number
of particles of quantities like the gap-energy and -position to the functional dependences
in the five-site-case with parabolic dispersion relation, because, in the parabolic case,
they have already been approximated in the following PhD thesis [11].
These quantities are meaningful, since we are interested in finding quantum phase tran-
sitions - but quantum phase transitions occur in large systems, ideally N → ∞. So,
it’s important to examine how the indicators of a quantum phase transitions change
when going from small to large systems, e.g., if the (assumed) signs for a quantum phase
transition disappear when increasing the system size, then there is no phase transition
after all.
Thus, we review the model given by the Hamiltonian (with ~

2m = 1 and R = 2π)

H =
∑

k=±2,±1,0

|k|a†kak − α
∑

k,l,m,n=±2,±1,0

δk+l,m+na
†
ka
†
l aman. (11)

Figure (8) is a plot of the nmax lowest energies of the system for different values of αN
with N being the fixed number of particles. As mentioned earlier, it is convenient to not
simply use α as the varying parameter since the most interesting part of the plot is close
to αN = 1 since if a quantum phase transition occurs, the energy spectrum narrows
around this point.
This becomes even more visible when looking at the energy difference to the groundstate
as seen in figure (9).

4.1. Gap-energy and -position of first and second exited energy

Comparing figure (9) and (10), we can see that with an increasing number of particles
the extrema are getting lower and are shifting closer to one.
This is especially easy to see in figure (11) as only the first and second exited energies for
different particle numbers are shown. In order to answer what the functional dependence
on N of these behaviors is, we look at the first and second exited energy and plot the
αN and (e1/2 − e0) values of the minimum against the number of particles N .
We define λ1/2 and u1/2 by

∂(e1/2 − e0)

∂αN

∣∣∣
αN=λ1/2

= 0,

u1/2 = (e1/2 − e0)
∣∣∣
λ1/2

(12)
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4. Five-site-case for arbitrary L and linear dispersion relation

0.0 0.5 1.0 1.5 2.0

-25

-20

-15

-10

-5

0

5

æN

e
n

Figure 8: Ten lowest energies as a function of αN .
(N = 30, L = 0, nmax = 10)
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Figure 9: Ten lowest energy differences as a function of αN .
(N = 30, L = 0)
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4. Five-site-case for arbitrary L and linear dispersion relation
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Figure 10: Ten lowest energy differences as a function of αN .
(N = 50, L = 0)

and assume a relation of the form

λ = Nm
∣∣∣ log()

log(λ) = log(Nm) = m log(N),

so the slope of the double logarithmic plot is our exponent m.
This results in the parameters and figures (12-15)

λ1 ∝ N−1.50841,

u1 ∝ N−0.524327,

λ2 ∝ N−1.47971,

u2 ∝ N−0.51829.

In the five-site-case with parabolic dispersion relation these dependences are [11]

usemiclassic ∝ N−
1
3 ,

λsemiclassic ∝ N−
2
3 .
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4. Five-site-case for arbitrary L and linear dispersion relation
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Figure 11: First and second exited energy for three different particle numbers. The
minimum is getting lower and shifts towards the critical point for an increasing
number of particles.
(N = 30, 40, 50;L = 0;n = 1, 2)
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4. Five-site-case for arbitrary L and linear dispersion relation
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Figure 12: αN value of the first exited energy minimum as a function of the number of
particles in order to determine the linear fit parameters:
2.64476− 1.50841x
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Figure 13: Energy value of the first exited energy minimum as a function of the number
of particles in order to determine the linear fit parameters:
0.988412− 0.524327x

Theses dependences differ from the five-site-case with linear dispersion relation. There-
fore, replacing the parabolic- by a linear dispersion relation does make a difference in
that regard.

17



4. Five-site-case for arbitrary L and linear dispersion relation
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Figure 14: αN value of the second exited energy minimum as a function of the number
of particles in order to determine the linear fit parameters:
3.07803− 1.47971x
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Figure 15: Energy value of the second exited energy minimum as a function of the num-
ber of particles in order to determine the linear fit parameters:
1.90059− 0.51829x
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5. Three-site-case for arbitrary L with spin 1/2 and linear dispersion relation

5. Three-site-case for arbitrary L with spin 1/2 and linear
dispersion relation

Now, we go one step further and also allow negative energies, and look at a model where
we essentially assume our bosons to have some form of (quasi-)spin-1

2 - for example a
bosonic system with two energy bands. In the environment of a crossing of the two
dispersion relations it can be approximated as a linear relation.
This is an entirely new system and only shares similarities with the Lieb-Liniger model.
Another possible interpretation of the subsequently defined Hamiltonian is that massless
particles have, in the moment the interaction occurs, a mass, creating a gap between
negative and positive energies.

E(k, s) = sk with s ∈ {±1}

-2 -1 0 1 2

-2

-1

0

1

2

k

E
(k
,s
)

The Hamiltonian in first quantization is defined as

H =
−i~
2m

N∑
α=1

∂

∂xα
σ(α)
x − 2Rα

∑
α 6=β,α<β

δ(xα − xβ)(σ(α)
z ⊗ σ(β)

z ) (13)

and in second quantization

H =
−i~
2m

∑
k,k′=±1,0
σ,σ′=±

〈k| ∂
∂x
|k′〉 〈σ|σx|σ′〉 a†kσak′σ′

−Rα
∑

k,l,m,n=±1,0
σ,σ′,γ,γ′=±

〈k, l|δ(x− x′)|n,m〉 〈σ, σ′|σ(1)
z ⊗ σ(2)

z |γ′, γ〉 a
†
kσa
†
lσ′amγanγ′

where a†k,σ and ak,σ are the annihilation- and creation-operator

a†k,σ |Ω〉 = |k, σ〉α , ak,σ |k, σ〉α = |Ω〉 , ak,σ |Ω〉 = 0. (14)

|Ω〉 is the vacuum state. They also satisfy the commutator relations

[akσ, a
†
k′σ′ ] = δk,k′δσ,σ′ ,

[akσ, ak′σ′ ] = [a†kσ, a
†
k′σ′ ] = 0.
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5. Three-site-case for arbitrary L with spin 1/2 and linear dispersion relation

Since we chose the kinetic term of the Hamiltonian to be proportional to σx, the two
spin states are

|±〉 =
1√
2

(
1
±1

)
. (15)

This allows us to calculate the following matrix elements

〈σ, σ′|σ(1)
z ⊗ σ(2)

z |γ′, γ〉 = 〈σ|σz|γ′〉 〈σ′|σz|γ〉 =

{
1 σσ′γ′γ ∈M
0 else

,

where M = {+ +−−,−−++,+−−+,−+ +−}

〈σ|σx|σ′〉 =

{
1 σσ′ ∈ {++,−−}
0 else

, 〈k| ∂
∂x
|k′〉 = i

2π

R
k′δk,k′ .

So the Hamiltonian of the system becomes (with ~
2m = 1 and R = 2π)

H = a†1+a1+ − a†1−a1− − a†−1+a−1+ + a†−1−a−1− − α
[

∑
k,l,m,n=±1,0

σ 6=γ

δk+l,m+n

(
a†kσa

†
lσamγanγ + a†kσa

†
lγamσanγ

) ]
(16)

=
↑

Appendix A

H0 − α
(
Hdiag +Hoffdiag +H†offdiag

)
(17)

with
H0 = n1+ − n1− − n−1+ + n−1−, (18)

Hdiag = 2
∑

k=±1,0

[
nk+nk− +

∑
l=±1,0
l>k

(nk+nl− + nk−nl+)
]
, (19)

Hoffdiag =
∑

k,l=±1,0
k<l

(
4a†k+a

†
l+ak−al− + 2a†k+a

†
l−al+ak−

)
+

∑
k=±1,0

a†k+a
†
k+ak−ak− +

∑
σ 6=γ

2
(
a†1σa

†
−1σa0γa0γ + a†1σa

†
−1γa0σa0γ

)
. (20)

The strategy is now again to write this Hamiltonian in some basis, diagonalize it and
plot its lowest energies as functions of the coupling constant α. As a basis we may choose

|n1+, n0+, n−1+, n1−, n0−, n−1−〉 = |n1, n2, n3, n4, n5, n6〉 . (21)

To evaluate the Hamiltonian, we need to make an enumerated list of all allowed states for
a given N and L. This is simply a generalization of the three-site-case. As an example
equation (8) and (10) gives us, for N = 2 and L = 1, only one allowed state being

|n1 = 1, n0 = 1, n−1 = 0〉 = |1, 1, 0〉 .
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5. Three-site-case for arbitrary L with spin 1/2 and linear dispersion relation

In the case here this would relate to four allowed states:

|0, 0, 0, 1, 1, 0〉 , |0, 1, 0, 1, 0, 0〉 , |1, 0, 0, 0, 1, 0〉 , |1, 1, 0, 0, 0, 0〉

We rearrange this in our state list in the form

stateListij = nij with i=1..d
j=1..6.

Thus, the dimension of the Hamiltonian matrix and length of the state list d is given by

d =

bN−L
2
c∑

n=0

(n+ 1)(N − L− 2n+ 1)(L+ n+ 1) (22)

= −1

6

(
(1 + f)(2 + f)(−3 + 3f + 3f2 + 6fL+ 3L2 − 3N − 2fN − 3LN)

)
∝ N4

with f = bN − L
2
c.

Now, we can start to calculate the Hamiltonian matrix

Hkj = 〈k|H|j〉 = 〈k|H0|j〉 − α
(
〈k|Hdiag|j〉+ 〈k|Hoffdiag|j〉+ 〈k|H†offdiag|j〉

)
with

|j〉 = |nj1, nj2, nj3, nj4, nj5, nj6〉 . (23)

We examine the off-diagonal matrix first

〈k|Hoffdiag|j〉 = 〈k|
13∑
i=1

cifini|j〉 =

13∑
i=1

cini(j) 〈k|fi|j〉 (24)

where i is an arbitrary numbering of the thirteen terms of Hoffdiag. For instance, one

of the terms is 4a†1a
†
2a4a5 and, as an example, would relate to

c = 4,

n(j) =
√

(nj1 + 1)(nj2 + 1)nj4nj5,

f |j〉 = |nj1 + 1, nj2 + 1, nj3, nj4 − 1, nj5 − 1, nj6〉

and analog for the rest.
In the sum of equation (24), only one of the thirteen terms of Hoffdiag will deliver a
contribution unequal to zero. For practical purposes it is more efficient to define and
use a tensor of rank six given by

Gni1,ni2,ni3,ni4,ni5,ni6 = i and = 0 when not specified. (25)

This enables to quickly check if any given set of occupation numbers

|k′〉 = |nk′1 , nk
′

2 , n
k′
3 , n

k′
4 , n

k′
5 , n

k′
6 〉
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5. Three-site-case for arbitrary L with spin 1/2 and linear dispersion relation

is part of the state list, i.e., is an allowed state of the system and, if so, at which position
it is in the state list.
For example, if we look at a particular term of the the off-diagonal Hamiltonian acting
on |j〉

c1n1f1 |j〉 = c1n1(j) |k′〉 ,

it will deliver us a matrix element at position

HG
nk
′

1 ,nk
′

2 ,nk
′

3 ,nk
′

4 ,nk
′

5 ,nk
′

6
,j = c1n1(j) if G

nk
′

1 ,n
k′
2 ,n

k′
3 ,n

k′
4 ,n

k′
5 ,n

k′
6
6= 0.

This approach reduces the amount of calculation needed for the off-diagonal part from
13d2 to 13d.
The diagonal part of the Hamiltonian is trivial and given by

H0kk = nk1 − nk3 − nk4 + nk6,

Hdiagkk = 2
(
nk1nk4 + nk2nk5 + nk3nk6 + nk2nk4 + nk5nk1

+ nk3nk5 + nk6nk2 + nk3nk4 + nk6nk1

)
.

for k = 1..d (26)

5.1. Example: Hamiltonian matrix for (N ,L) = (2,1) and (3,2)

To get a feeling for the structure of the matrix, they are written here in full form for
two examples with a low-dimensional state space.

H[2, 1] =


−1 0 0 0
0 −1 0 0
0 0 1 0
0 0 0 1


︸ ︷︷ ︸

H0

−α




0 0 0 0
0 2 0 0
0 0 2 0
0 0 0 0


︸ ︷︷ ︸

Hdiag

+


0 0 0 4
0 0 2 0
0 2 0 0
4 0 0 0


︸ ︷︷ ︸
Hoffdiag+H†offdiag
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5. Three-site-case for arbitrary L with spin 1/2 and linear dispersion relation

H[3, 2] =



−2 0 0 0 0 0
0 −2 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 2 0
0 0 0 0 0 2

− α


0 0 0 0 0 0
0 4 0 0 0 0
0 0 4 0 0 0
0 0 0 4 0 0
0 0 0 0 4 0
0 0 0 0 0 0



− α



0 0 0 5.65685 2 0
0 0 2.82843 0 0 2
0 2.82843 0 0 0 5.65685

5.65685 0 0 0 2.82843 0
2 0 0 2.82843 0 0
0 2 5.65685 0 0 0


5.2. Critical point

In the previous chapters we observed the critical point for the combined parameter αN
to be typically close to one. As we can see in figure (16) this point has now been
shifted close to one half. Although it’s questionable if the definition of a critical point
really makes sense here, since when comparing the latter figure to, e.g., figure (1), the
indicators for a quantum phase transitions are far less visible, i.e., if there is a quantum
phase transition, then one can only suspect it.
The key problem is that, as mentioned earlier, phase transitions occur in large systems
but while the dimension of the Hamiltonian matrix in the three-site-case with no spin
degree of freedom grows ∝ N , in our three-site-case with a spin degree of freedom it
grows ∝ N4.
So, while in the system, whose energies are displayed in figure (1), 300 particles are
manageable, in the system discussed in this chapter they aren’t and consequently a
quantum phase transition is a lot harder to find.

5.3. Symmetries/constants of motion

In, for example, figure (16) we can see several crossing and can, numerically, exclude
avoided crossings with a precision of 10−16.
Therefore, there are most likely still integrals of motions we should use to reduce the
system’s phase space. This makes sense because a constant of motion doesn’t change per
definition as the system defined by a certain Hamiltonian progresses. According to that
the state of the system with a certain value of the constant of motion will never progress
into a state with a different value of the same constant of motion. So, any state space
with a certain value of a constant of motion is independent of the state space with any
different value of this constant of motion. This guarantees us that, by fixing constants
of motion, we only cut off states the system could never progress into in the first place.
For the system discussed in this chapter such an integral of motion is the operator P̂ .
The Hamiltonian given in (16) is invariant under the simultaneous swap of all spin- and
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5. Three-site-case for arbitrary L with spin 1/2 and linear dispersion relation
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Figure 16: Energy difference to the groundstate as a function of αN . The critical point
occurs at around αN = 0.5.
(N = 15, L = 0, nmax = 30)

k-values. So, it is invariant under the operator:

P̂ {k, σ} ≡ {−k,−σ} (27)

Using (21) and (23), it follows that

P̂ |i〉 = P̂ |ni1, ni2, ni3, ni4, ni5, ni6〉 = |ni6, ni5, ni4, ni3, ni2, ni1〉 . (28)

However, the resulting state in latter equation only has the same momentum for L = 0,
since L = −L⇔ L = 0.
It holds true that

P̂ P̂ |i〉 = |i〉 ⇔ P̂ |i〉 = ± |i〉 ,

HP̂ |i〉 = P̂H |i〉 = P̂Ei |i〉 = EiP̂ |i〉 ⇒ H
(
|i〉 ± P̂ |i〉

)
= Ei

(
|i〉 ± P̂ |i〉

)
.

So, we can transform into a new basis which is an eigenbasis of the operator P̂ given by

|j〉± ≡
1√
2

(
|i〉 ± P̂ |i〉

)
and P̂ |j〉± = ± |j〉± .

The transformation matrix for the basis change becomes

Tij = 〈ni|mj〉 ∀i, j = 1...d (29)
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5. Three-site-case for arbitrary L with spin 1/2 and linear dispersion relation

where {|mi〉} is the new basis and is arranged in a certain ordering{
|mi〉

}
=
{
|1〉+ , .., |(d+W )/2〉+ , |1〉− , .., |(d−W )/2〉−

}
(30)

with d given by (22) and W being the amount of state kets in the initial basis that are
already eigenvectors of the operator P̂ .
W is, for L = 0,

WN =

{
0 N ∈ 2N + 1

WN−2 + N
2 + 1 with W2 = 3 N ∈ 2N

. (31)

For Example for N = 2 and L = 0, there are seven allowed states (ket definition in (21)):{
|0, 0, 0, 0, 2, 0〉 , |0, 1, 0, 0, 1, 0〉 , |0, 2, 0, 0, 0, 0〉 ,

|0, 0, 0, 1, 0, 1〉 , |0, 0, 1, 1, 0, 0〉 , |1, 0, 0, 0, 0, 1〉 , |1, 0, 1, 0, 0, 0〉
}

The transformation matrix in this case then is

T =
1√
2



0 0 0 1 0 1 0√
2 0 0 0 0 0 0

0 0 0 1 0 −1 0
0 0 0 0 1 0 1

0
√

2 0 0 0 0 0

0 0
√

2 0 0 0 0
0 0 0 0 1 0 −1


. (32)

The Hamiltonian matrix in the new basis has a two block structure

H[L = 0] =

(
H+ 0
0 H−

)
(33)

with H+ being of the dimension d+W
2 × d+W

2 and H− being a d−W
2 × d−W

2 matrix. For
an odd number of particles W is always zero.
In the structure of the Hamiltonian matrix in the new basis we can see what was men-
tioned earlier. The operator P̂ has two eigenvalues ±1, hence, the matrix in the new
basis has two independent blocks, one for each eigenvalue.

5.4. Degeneracy for L=0 and odd number of particles

We can use this newly found constant of motion to try to understand the following
phenomena.
For a small number of particles the dimension of the Hamiltonian matrix is reasonably
low as well and thus enabling us to plot all eigenvalues. Figure (17) is such a plot of the
full spectrum for N = 3 and L = 0.
From formula (22) we expect twelve eigenvalues, but can clearly only see six different
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Figure 17: Full spectrum plot, i.e., plot of all eigenenergies for a given N,L.
(N = 3, L = 0, nmax = 12)

curves in latter figure. After examining the data points themselves we find that every
energy occurs with degeneracy two.
This degeneracy disappears when looking at a system with an even number of particles
or if L 6= 0.
Taking a closer look at the Hamiltonian matrix given in (33), we find that the matrix
H+ has the same eigenvalues as H− for an odd number of particles. Therefore H− does
not add any additional information of the system and initially choosing this basis and
only calculating/diagonalizing H+ greatly improves performance.

5.4.1. Kramers theorem

The above degeneracy for an odd number of particles can be explained by Kramers
theorem.
Let θ be the time-reversal operator, so that θ |α〉 is the time-reversed state of |α〉

θ = KP̂ (34)

with P̂ defined in (27) and K being the complex conjugation.
One can show that

θ2(c+ |+〉+ c− |−〉) = −(c+ |+〉+ c− |−〉)⇔ θ2 = −1 (35)
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5. Three-site-case for arbitrary L with spin 1/2 and linear dispersion relation

holds true for a general spin 1
2 -ket (for a proof you may look in chapter 4.4 of [5]). This

statement can be generalized to:

θ2 |j half-integer〉 = − |j half-integer〉 (36)

If the commutator of H and θ vanishes, both energy eigenkets |n〉 and θ |n〉 belong to
the same energy eigenvalue. Assume |n〉 and θ |n〉 represent the same state, thus they
only differ by a phase factor

θ |n〉 = eiδ |n〉 . (37)

Applying θ from the left to latter equation results in

θ2 |n〉 = θeiδ |n〉 = e−iδθ |n〉 = e−iδeiδ |n〉 = |n〉 . (38)

Which is a contradiction to equation (36) for half-integer j systems. Hence, the assump-
tion was wrong and the two kets do not represent the same state - there must be a
degeneracy. Furthermore, the degree of degeneracy is an even number[5].
This degeneracy is broken if we add a magnetic field, i.e., add

N∑
α=1

βσ(α)
x (39)

to the Hamiltonian in (13) which simply favors configurations with an overall spin
down[3].
Comparing figure (17) and (18) we can clearly see the degeneracy being broken by Zee-
man splitting.

5.5. Full spectrum for N = 2, 3, 4, 5

Now, we can exploit the conservation of the time-reversal operator to reduce the system’s
phase space. We split the entire spectrum now in the two individual spectra defined by
(33) and plot the eigenvalues for each matrix H+, H− in figures (19) to (22). We can
again confirm the degeneracy for an odd number of particles as already discussed in the
previous chapter in figure (20) and (22).
For N = 2 the Hamiltonian matrix suffices a more special form, and one can look at
three independent blocks H ′, H+, H−:

H[L = 0, N = 2] =

H ′ 0 0
0 H+ 0
0 0 H−

 (40)
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Figure 18: Full spectrum plot - the degeneracy is broken by the presence of a magnetic
field.
(N = 3, L = 0, β = 0.1, nmax = 12)
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Figure 19: Plot of all eigenvalues of H ′, H+, H− for N = 2 particles - from left to right.
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Figure 20: Plot of all eigenvalues of H+, H− for N = 3 particles - from left to right. Both
plots are, due to the energy degeneracy for a system with an odd number of
particles, identical.
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Figure 21: Plot of all eigenvalues of H+, H− for N = 4 particles - from left to right.
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Figure 22: Plot of all eigenvalues of H+, H− for N = 5 particles - from left to right. Both
plots are, due to the energy degeneracy for a system with an odd number of
particles, identical.
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5.6. Occurrence of energy crossings with fixed N ,L,P

Taking a closer look at the right plot in figure (21) reveals an interesting crossing which
is marked in figure (23). Since we are dealing with a system with a fixed number of
particles, constant total momentum L and a fixed eigenvalue of the operator P̂ given
in expression (27), the occurence of a crossing is an indicator for another yet unused
integral of motion.
As the energy gap between the two energies becomes smaller than 10−16, which is
machine-precision, it is relatively safe to exclude an avoided crossing. So, we conclude
that there still might be some unused symmetry of the Hamiltonian.
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Figure 23: Plot of all eigenvalues of H− for N = 4 and L = 0.

5.6.1. Product of spin operators as an integral of motion

The Hamiltonian in equation (13) is invariant under the operator Ŝ defined as

Ŝ =
N
⊗
α=1

σ(α)
x . (41)

The action of Ŝ on any ket defined by equation (21) is

Ŝ |n1, n2, n3, n4, n5, n6〉 = (−1)(n4+n5+n6) |n1, n2, n3, n4, n5, n6〉 . (42)

Therefore, the operator has eigenvalues ±1 and is an integral of motion.
The commutator of Ŝ and P̂ is

P̂ Ŝ = (−1)N ŜP̂ → [Ŝ, P̂ ] =

{
0 N even

2ŜP̂ N odd
(43)
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Figure 24: Plot of all eigenvalues of H− with eigenvalue 1 of Ŝ on the left and −1 on the
right.
(N = 4, L = 0, E[Ŝ] = ±1, E[P̂ ] = −1)

and hence only for an even number of particles we can be simultaneously in an eigenbasis
of Ŝ and P̂ .
This enables us to revisit the crossing in figure (23) and split the spectrum in two, with
eigenvalue ±1 of the operator Ŝ.
In figure (24) we can see that even though this crossing disappears two other crossings
remain and both their gaps get closer than 10−15, consequently there are still some
unused integrals of motion left.
Checking crossings of other combinations of N ∈ 2N, L = 0, E[Ŝ] = ±1 and E[P̂ ] = ±1
reveals that most (all) crossings, but the earlier two, are now avoided crossings.
Here E[Ŝ] is used equivalently to “eigenvalue of Ŝ”.
For an odd number of particles choosing a fixed eigenvalue of Ŝ results in the same
degeneracy breaking we have already seen in figure (20).
This means that choosing the eigenvalue ±1 of either P̂ or Ŝ results in the same energies
for an odd number of particles.

5.7. Approximation of the energies of the five-site-case via the
three-site-case

The Hamiltonian in equation (13) is scale-invariant

H(x→ x′ = ax) =
−i~
2ma

N∑
α=1

∂

∂xα
σ(α)
x − 2Rα

∑
α 6=β,α<β

1

a
δ(xα − xβ)(σαz ⊗ σβz )

=
1

a
H(x).

As a result, the eigenenergies of such a scaled system are simply connected through this
factor to the eigenenergies of the unscaled system.
We can use this knowledge to approximate the eigenenergies of the five-site-case with

31



5. Three-site-case for arbitrary L with spin 1/2 and linear dispersion relation

0.0 0.2 0.4 0.6 0.8 1.0

-6

-4

-2

0

2

4

æN

e
n

0.0 0.2 0.4 0.6 0.8 1.0
-8

-6

-4

-2

0

2

4

æN

e
n

Figure 25: Full spectrum plot of the five-site-case for N = 2, L = 0 on the left. The right
figure is a comparison of the energies of the rescaled three-site-case (blue) to
the five-site-case (red) for N = 2, L = 0, E[P̂ ] = 1.

the three-site-case. Using the definition of plane waves from equation (4), we get

Ψk(x→ x′ = ax) =
1√
R
ei

2π
R
kax = Ψk′=ka(x). (44)

Thus adding higher k-modes is equivalent to adding them between the zeroth and first
k-mode and then rescaling the whole system. The right figure of figure (25) is an energy
plot of the exact five-site-case and an approximation through the three-site-case for
states with eigenvalue one of the time-reverse operator. Unfortunately, it’s not a good
approximation of any energies as αN increases.

5.8. Solution of the n-site-case with the three-site-case for N = 2,L = 0

The always present approximation throughout this whole thesis is some form of trunca-
tion, i.e., cutting off all the k-modes higher than some threshold value kmax (and lower
than −kmax). This means, in the continuous case, where kmax → ∞, we no longer ap-
proximate.
While actually reaching indefinitely high modes is impossible, going to (relatively) high
modes certainly isn’t for some N,L.
From equation (21) we get for N = 2, L = 0 the following allowed states in the three-
site-case

|0, 2, 0, 0, 0, 0〉 , |0, 1, 0, 0, 1, 0〉 , |0, 0, 0, 0, 2, 0〉 ,
|1, 0, 1, 0, 0, 0〉 , |1, 0, 0, 0, 0, 1〉 , |0, 0, 1, 1, 0, 0〉 , |0, 0, 0, 1, 0, 1〉
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and in the five-site-case

|0, 0, 2, 0, 0, 0, 0, 0, 0, 0〉 , |0, 0, 1, 0, 0, 0, 0, 1, 0, 0〉 , |0, 0, 0, 0, 0, 0, 0, 2, 0, 0〉 ,
|0, 1, 0, 1, 0, 0, 0, 0, 0, 0〉 , |0, 1, 0, 0, 0, 0, 0, 0, 1, 0〉 , |0, 0, 0, 1, 0, 0, 1, 0, 0, 0〉 ,
|0, 0, 0, 0, 0, 0, 1, 0, 1, 0〉 ,
|1, 0, 0, 0, 1, 0, 0, 0, 0, 0〉 , |1, 0, 0, 0, 0, 0, 0, 0, 0, 1〉 , |0, 0, 0, 0, 1, 1, 0, 0, 0, 0〉 ,
|0, 0, 0, 0, 0, 1, 0, 0, 0, 1〉 with |n2+, n1+, n0+, n−1+, n−2+, n2−, n1−, n0−, n−1−, n−2−〉 .

As we can see the first seven states of the five-site-case are the seven states of the three-
site-case and using this recursive relation yields a repeating structure of the Hamiltonian
matrix for the five-site-case:

H = H0 − αV =



0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 2 0 0 0 0 0 0
0 0 0 0 0 −2 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 4 0 0
0 0 0 0 0 0 0 0 0 −4 0
0 0 0 0 0 0 0 0 0 0 0



−α



0 0 2 0 0 0 2
√

2 0 0 0 2
√

2
0 2 0 0 2 2 0 0 2 2 0

2 0 0 2
√

2 0 0 0 2
√

2 0 0 0

0 0 2
√

2 0 0 0 4 0 0 0 4
0 2 0 0 2 2 0 0 2 2 0
0 2 0 0 2 2 0 0 2 2 0

2
√

2 0 0 4 0 0 0 4 0 0 0

0 0 2
√

2 0 0 0 4 0 0 0 4
0 2 0 0 2 2 0 0 2 2 0
0 2 0 0 2 2 0 0 2 2 0

2
√

2 0 0 4 0 0 0 4 0 0 0



three-site-case

If the matrix structure of the interaction part of the Hamiltonian of the five-site-case is,

Vfive-site =

 3x3 3x4 3x4

4x3 4x4 4x4

4x3 4x4 4x4
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then the seven-site-case matrix is given by

Vseven-site =


3x3 3x4 3x4 3x4

4x3 4x4 4x4 4x4

4x3 4x4 4x4 4x4

4x3 4x4 4x4 4x4

 .

This enables us to plot the energies for N = 2 and L = 0 for different values of kmax. In
figures (26) we can see the 3-,11-,21-,101-,201-,1001-site-case respectively.
Only the groundstate and two exited energies strongly depend on the interaction, but
the seemingly constant energies are not, as we can see in figure (28).
This energy behavior actually confirms my advisor’s (Benjamin Geiger) prediction that
the continuous case has the energies:

En(α) = 2n+
2

π
arctan(−πα)

Furthermore, the slope of the linear increase of the two energies converges against ±kmax.
Therefore, these two energies are only present in the truncated model since in the con-
tinuous case kmax =∞.
This also implies that for any kmax at αN = 1 the two linear energies separate from the
very dense energy spectrum.
We may recall that adding two sites results in four additional energies of the system
- one at kmax, one at −kmax and two at exactly zero energy. Thus, this interaction-
independent energy zero is endlessly degenerate in the continuous case, and the density
of states is a constant with a delta-function at zero energy.
The lower energy converges against the ground state energy for an increasing αN as we
can see in figure (27).

5.9. Attractive and repulsive case due to spin swap symmetry

The energy spectrum of the attractive case (α < 0) is identical to the inverted energy
spectrum of the same system in the repulsive case (α > 0). This means that we can
reproduce the energy spectrum of the attractive case via the repulsive case and vice
versa by simply inverting it - visible in figure (29).
To be more precise the operator defined by

Ŝ |σ〉 = |γ〉 with σ 6= γ (45)

inverts all spin values and it acting on the Hamiltonian given in equation (17) delivers:

ŜH(α)Ŝ† = Ŝ

H0 − α

Hdiag +Hoffdiag +H†offdiag︸ ︷︷ ︸
=H1


 Ŝ†

= −H0 − αH1︸ ︷︷ ︸
same eigenvalues as H(α) = H0 − αH1

= − (H0 + αH1) = −H(−α) (46)
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Figure 26: Full spectrum plot for fixed N = 2 and L = 0 and different kmax =
{1, 5, 10, 50, 100, 500} values - from top left to bottom right. Allowing high k-
modes results in only three energies depending on the interaction, the ground-
state and two exited energies. The two exited energies rise linearly.
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Figure 27: Full spectrum plot for N = 2, L = 0, kmax = 100 - the two linearly rising
energies separate from the dense energy spectrum at a constant αN = 1.
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Figure 28: Cutout of the energy plot for N = 2, L = 0 and kmax = 200. The seemingly
interaction-independent energies aren’t interaction-independent.

36



5. Three-site-case for arbitrary L with spin 1/2 and linear dispersion relation

0.0 0.2 0.4 0.6 0.8 1.0

-4

-3

-2

-1

0

1

2

3

æN

e
n

0.0 0.2 0.4 0.6 0.8 1.0

-3

-2

-1

0

1

2

3

4

æN

e
n

Figure 29: Full spectrum plot of the attractive case on the left and repulsive case on the
right for N = 2, L = 0, nmax = 7.

5.10. Thermodynamics of the system

We assume a canonical ensemble, i.e., the system defined by the Hamiltonian (17) is
in thermal contact with a much bigger reservoir with a constant temperature T . The
system itself can be very small (even 2 particles). The reservoir does not change due to
the contact with the system and is only allowed to exchange energy while keeping the
total energy constant. Consequently, the total system is isolated[4].
The thermodynamic potential of the canonical ensemble is the (Helmholz) free energy

F (T, V,N) = −kbT ln(Z) (47)

with the partition sum

Z =
∑
n

e
− En
kbT . (48)

5.10.1. Heat capacity

The internal energy and heat capacity are then easily calculable with

Ē =
∑
n

pnEn = −∂ ln(Z)

∂β
with β =

1

kbT
, (49)

Cv =

(
∂Ē

∂T

)
V

. (50)

We set Boltzmann’s constant to one (kb = 1) and plot the heat capacity for N = 4 in
figure (30) and N = 10 in figure (31). In both cases the total momentum L vanishes
(L = 0).
We see that with an increasing coupling constant the maximum value of the heat capacity
shifts away from temperature one to higher temperatures.
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Figure 30: Heat capacity as a function of T and αN for N = 4 particles. The maximum
shifts to higher temperatures for increasing αN .

5.10.2. Chemical potential

The chemical potential is defined as

µ =

(
∂F

∂N

)
T,V

. (51)

As the derivative of the free energy with respect to N is only plausible in the thermal
limit, one can alternatively look at the quantity

M(N) =
F (N + 1)− F (N)

N + 1−N
= F (N + 1)− F (N) (52)

and plot the free energy and “chemical potential” while varying the number of particles
and keeping either the temperature or the combined parameter αN fixed. In both
instances the total momentum is equal to zero.
These plots are seen in figures (32) and (33). The chemical potential is strictly lower for
an odd number of particles.
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Figure 31: Heat capacity as a function of T and αN for N = 10 particles. The maximum
shifts to higher temperatures for increasing αN .
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Figure 32: F and M as a function of the number of particles. αN = 0.01 is constant.
For T = 1 the “chemical potential” M converges against two different values
for an even and odd number of particles, respectively.
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Figure 33: F and M as a function of the number of particles. T = 10 is constant. The
“chemical potential” M is strictly lower for an odd number of particles. This
gap closes as the number of particles increases.
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6. Conclusion

The Truncated Lieb-Liniger model has some fascinating properties. Even in its simplest
incarnation, with just three allowed k-modes, it already shows phenomena like an en-
ergy gap narrowing around the critical point and a converging shift of this critical point
towards αN = 1 with an increasing number of particles.
While the five-site-case with parabolic dispersion relation doesn’t have any more cross-
ing eigenenergies, the five-site-case with linear dispersion relation does. Thus, fixing the
number of particles and total momentum of the system keeps all integrals of motion only
in the parabolic case constant.
In the linear case of the five-site model the position of the excitation energy minimum
shifts to one ∝ N−1.5 and the energy of the excitation energy minimum converges to zero
∝ 1√

N
. These values differ from the ones obtained for the five-site-case with parabolic

dispersion relation.
Lastly, we use this modeling to approximate the behavior of a bosonic system with a two
band structure in the environment of a crossing in its dispersion relation. We find two
more integrals of motion, the time-reverse operator and a spin-parity-operator, which
enable us to (almost) completely eliminate all crossings.
Furthermore, we can confirm Kramers-Theorem and the degeneracy breaking due to a
magnetic field and are able to reproduce the repulsive case via the attractive case by
inverting the energy spectrum and vice versa.
Moreover, the system’s Hamiltonian is scale-invariance and we can use this invariance
to approximate energies of higher site-cases by solving the three-site-case and rescaling
it - it turns out to be a rather poor approximation for all energies as αN increases.
Finally, we have seen that solving the three-site-case is enough to exactly solve any
higher site-case or rather compute its Hamiltonian matrix, at least for some combina-
tions of N,L. This procedure is exemplary shown for N = 2, L = 0, and we obtain that
all energies but three are almost interaction-independent and that the density of states
peaks at zero energy.
Interesting results can also be found in the thermodynamics of the system. The maxi-
mum of the heat capacity shifts to higher temperatures for an increasing αN , and the
chemical potential converges to two different values as the number of particles increases
depending on whether the number of particles of the system is even or odd.
Regarding a continuation of this topic - there are two obvious starting points. N,L, P̂
and Ŝ seem to not be the only integrals of motion since fixing them did not eliminate
all crossings as we saw in section 5.6.1 - what else is preserved ?
The second approach could be to allow even higher k-modes. The problem will quickly
become to write very efficient code since the dimension of the Hamiltonian matrix will
rise drastically.
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A. Appendix

H = a†1+a1+ − a†1−a1− − a†−1+a−1+ + a†−1−a−1− − α
[

∑
k,l,m,n=±1,0

σ 6=γ

δk+l,m+n

(
a†kσa

†
lσamγanγ + a†kσa

†
lγamσanγ

) ]

= a†1+a1+ − a†1−a1− − a†−1+a−1+ + a†−1−a−1− − α
[

∑
k,l,m,n=±1,0
k=m,l=n
σ 6=γ

(
a†kσa

†
lσamγanγ + a†kσa

†
lγamσanγ

)
+

∑
k,l,m,n=±1,0
k 6=m,l 6=n
σ 6=γ

δk+l,m+n

(
a†kσa

†
lσamγanγ + a†kσa

†
lγamσanγ

) ]

= a†1+a1+ − a†1−a1− − a†−1+a−1+ + a†−1−a−1− − α
[

∑
k,l,m,n=±1,0
k=m,l=n
k 6=l
σ 6=γ

(
a†kσa

†
lσamγanγ + a†kσa

†
lγamσanγ

)
+

∑
k,l,m,n=±1,0
k=m,l=n
k=l
σ 6=γ

(
a†kσa

†
lσamγanγ + a†kσa

†
lγamσanγ

)
+

∑
k,l,m,n=±1,0
k 6=m,l 6=n
k=n,l=m
σ 6=γ

(
a†kσa

†
lσamγanγ + a†kσa

†
lγamσanγ

)
+

∑
k,l,m,n=±1,0
k 6=m,l 6=n
k 6=n,l 6=m
σ 6=γ

δk+l,m+n

(
a†kσa

†
lσamγanγ + a†kσa

†
lγamσanγ

) ]

= a†1+a1+ − a†1−a1− − a†−1+a−1+ + a†−1−a−1− − α
[

∑
k,l=±1,0
k<l
σ 6=γ

2
(
a†kσa

†
lσakγalγ + a†kσa

†
lγakσalγ

)
+
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∑
k=±1,0
σ 6=γ

(
a†kσa

†
kσakγakγ + a†kσa

†
kγakσakγ

)
+

∑
k,l=±1,0
k<l
σ 6=γ

2
(
a†kσa

†
lσalγakγ + a†kσa

†
lγalσakγ

)
+

∑
k,l,m,n=±1,0
k 6=m,l 6=n
k 6=n,l 6=m
σ 6=γ

δk+l,m+n

(
a†kσa

†
lσamγanγ + a†kσa

†
lγamσanγ

) ]

= a†1+a1+ − a†1−a1− − a†−1+a−1+ + a†−1−a−1− − α
[

∑
k,l=±1,0
k<l
σ 6=γ

4a†kσa
†
lσakγalγ+

∑
k=±1,0
σ 6=γ

(
a†kσa

†
kσakγakγ + a†kσa

†
kγakσakγ

)
+

∑
k,l=±1,0
k<l
σ 6=γ

2
(
a†kσa

†
lγakσalγ + a†kσa

†
lγalσakγ

)
+

∑
k,l,m,n=±1,0
k 6=m,l 6=n
k 6=n,l 6=m
σ 6=γ

δk+l,m+n

(
a†kσa

†
lσamγanγ + a†kσa

†
lγamσanγ

) ]

= n1+ − n1− − n−1+ + n−1− − α
[

∑
k,l=±1,0
k<l

4
(
a†k+a

†
l+ak−al− + (a†k+a

†
l+ak−al−)†

)
∑

k=±1,0

(
a†k+a

†
k+ak−ak− + (a†k+a

†
k+ak−ak−)† + 2nk+nk−

)
+

∑
k,l=±1,0
k<l

2
(
nk+nl− + nk−nl+ + a†k+a

†
l−al+ak− + (a†k+a

†
l−al+ak−)†

)
+

∑
σ 6=γ

2

(
a†1σa

†
−1σa0γa0γ + a†1σa

†
−1γa0σa0γ +

(
a†1σa

†
−1σa0γa0γ + a†1σa

†
−1γa0σa0γ

)†)]
= H0 − α

(
Hdiag +Hoffdiag +H†offdiag

)
with

H0 = n1+ − n1− − n−1+ + n−1−
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Hdiag = 2
∑

k=±1,0

[
nk+nk− +

∑
l=±1,0
l>k

(nk+nl− + nk−nl+)
]

Hoffdiag =
∑

k,l=±1,0
k<l

(
4a†k+a

†
l+ak−al− + 2a†k+a

†
l−al+ak−

)
+

∑
k=±1,0

a†k+a
†
k+ak−ak− +

∑
σ 6=γ

2
(
a†1σa

†
−1σa0γa0γ + a†1σa

†
−1γa0σa0γ

)
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