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Dynamic Motion Surrounds Us Everywhere

Introduction

L

AU

— Agile motion plays a vital role in biological and technological domains.

~ Evolutionary
: adaptation of
animals

Capabilities and
efficiency of
robots

| Everyday
activities of
humans

— Fundamentally, there are two tasks that involve dynamic motions: motion state estimation and motion control.

estimate and track state Dynamic, agile motion actuate system to

mformghon O_f a system in achieve a desired motion
dynamic motion

Motion State Estimation Motion Control
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Applications FA\\UJ
Introduction

— Motion state estimation and motion control are central for various applications.

- -

; Motion State Estimation Motion Control \

gait analysis and joint stabilisation

4 2 paraplegic cycling assistive devices

diagnostics cerebral
palsy in infants

drop foot detection FES control
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Sensors and Actuators EAU

Introduction

— Motion state estimation and motion control are central for various applications.

— These applications require a suitable set of sensors and actuators.

Motion State Estimation

-

T

actuators

ensor
Sensors

4

rel

TN
2
)

Experts are required to identify the problem and select & calibrate the suitable methods.
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Non-Restrictive, Plug-and-Play Solution

Introduction

L

n—/A/%\\U

— Typically, each application requires a tailored solution; we want plug-and-play, hon-restrictive methods.

_________________

4l
4 \ @
@ e

— Model-based approaches do not scale and generalize - RNNs that learn to identify the problem and calibrate.

— Training the RNN in simulation allows for thousands (or millions) of training datapoints.

_________________

" Simulated

Applications Core Research Question: How can the combination of

RNNs and Sim-to-Real Transfer contribute to the
development of non-restrictive, plug-and-play solutions for
5% motion state estimation and solutions for motion control?

Riilimmiiing

__________________
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IMUs and Inertial Motion Tracking
State Estimation with IMUs

L
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— Inertial Measurement Units (IMUs, or inerital sensors) have become small and affordable.

- lightweight, wireless, and battery-powered

- 3D gyroscope (angular velocity)

- 3D accelerometer (gravity + change of velocity)

-

Apollo IMU (1969, ~0.5m) MEMS IMU (2019, ~icm) - 3D magnetometer (Earth’s magentic field + others)

— Inertial Motion Tracking (IMT) tracks human or robot motion using wearable IMUs. Typically, one IMU per segment.

. IMUs IMT algorithms > Orientations /

Visualised Pose
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Four Major Challenges in IMT

State Estimation with IMUs

— In many real-world applications, IMT algorithms are faced with several challenges.

Magnetic Disturbances
(e.g. in indoor environments)

80
| | |

| - N i 60
| | | microT

Earth field Ferromagnetic Disturbed 40

Material Field
= 20
Adopted from [Solin et al. 2018]
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Four Major Challenges in IMT

State Estimation with IMUs

AU

I

— In many real-world applications, IMT algorithms are faced with several challenges.

Magnetic Disturbances Sparse Sensor Setups

Adopted from [Movella Inc. 2024]
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Four Major Challenges in IMT

State Estimation with IMUs

T
>
(@

— In many real-world applications, IMT algorithms are faced with several challenges.

Magnetic Disturbances Sparse Sensor Setups Anatomical Calibration

+ = = =
= - pr——dy
l, ,/“ : ’j 4
¢ —-— - B1 , BQ:
», , aligned with
‘. - anatomical axes

Adopted from [Laidig et al. 2022]
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Four Major Challenges in IMT

State Estimation with IMUs

— In many real-world applications, IMT algorithms are faced with several challenges.

Magnetic Disturbances Sparse Sensor Setups Anatomical Calibration

Sw, Sg:
aligned with
IMU housing

B1 5 Bgi
aligned with
anatomical axes

L

Nonrigid IMU Attachment

AU
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Addressing All Four Challenges

State Estimation with IMUs

AU

I

— We want a non-restrictive method that can tackle all four challenges.

mag.-free sparse . calib. nonrigid

i1 (FE) radlus\% —0
- - Bi (upper arm) B, (forearm) /\/’
“
‘ v e

rellable outdoors allows for sparse reduces expert knowledge and robust to nonrigid attachment
and indoors sensor setups calibration & modelling efforts and reduces motion artifacts
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State of the Art FA\\U

State Estimation with IMUs

— The current state of the art addresses at most two challenges simultaneously.

ﬁ;‘?f_g"free @ Kok etal. 2014 | [ Laidig et al. 2017 & 2019 @ Cuti et al. 2008 calib.
| — @ Lehmann et al. 2020 & 2020 & 2024 Taetz et al. 2016 @ Seel etal. 2012 ) W
m— B Weyagers et al. 2020 B Laidig Iet al. 2022 |§ Kong et al. 2016
| I} Olsson et al. 2020

—5 Eckhoff et al. 2020 —@ Grapetin et al. 2020 ? Goal

Iﬁ von Marcard et al. 2017

4@ Huang et al. 2018 @ Yietal I2021 & 2022 4@ Cutti et al. 2006

‘ Iﬁ Zheng et al. 2021 Iﬁ Van Wouwe et al. 2023 .ﬁ

sparse B Jiang et al. 2022 | nonrigid

— Goal: Non-restrictive, plug-and-play solution for IMT that tackles all four challenges.

mag.-free sparse calib. nonrigid
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Methods Overview Inertial Motion Tracking

State Estimation with IMUs / Methods

— First, train one RNN for each
IMT problem, demonstrating
observability of individual IMT
problems in-silico.

4@ FUSION (2022)

S. Bachhuber, D. Weber, I. Weygers, and T. Seel, “RNN-
based Observability Analysis for Magnetometer-Free Sparse
Inertial Motion Tracking,” 2022 International Conference on
Information Fusion

RNN-based Observability Analysis for
Magnetometer-Free Sparse Inertial Motion Tracking

— Second, develop domain
randomisations to overcome the
sim-to-real gap.

B Sensors L. (2023)

S. Bachhuber, D. Lehmann, E. Dorschky, A. D. Koelewijn, T.
Seel, and I. Weygers, “Plug-and-Play Sparse Inertial Motion
Tracking With Sim-to-Real Transfer,” IEEE Sensors Letters

Plug-and-Play Sparse Inertial Motion Tracking With Sim-to-Real Transfer
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— Third, unify the individual
solutions by training a single
RNN on all observable IMTPs.

@  TMLR(2024)

S. Bachhuber, I. Weygers, D. Lehmann, M. Dombrowski, and T.
Seel, “Recurrent Inertial Graph-Based Estimator (RING): A Single
Pluripotent Inertial Motion Tracking Solution,” Transactions on
Machine Learning Research

Inertial Graph-Based Esti (RING):
A Single Pluripotent Inertial Motion Tracking Solution
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Domain Randomizations
State Estimation with IMUs / Methods

Training

— During training of RNN, extensive domain randomisations are applied.
Simulator S@

pE—

N |
> _
Aree g
mag.-free :

Kinematic Chains with
different lengths

. » Randomized Spring-Damper

Randomized Sensor Placement Sparse Sensor Setup Randomized Graph Randomized Initial Pose
&L
~ kr’.
‘ ~
M s - Iéq
Randomise
» . Floating-Base RNN learns motion
RNN learns to self-calibrate earns sparse sensing RNN learns to not RNN learns to converge artifact compensation
— — exploit a fixed center of — __ —
' 4 sparse .
calibr.  N\ame 2 s R otation nonrigid %
19. Marz 2025 17
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Generalising to Multiple IMT Problems
State Estimation with IMUs / Methods

I

FAU

— How can we train a single NN with a fixed set of parameters despite different input/output shapes?
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Method Overview Inertial Motion Tracking
State Estimation with IMUs / Methods

=AU

— First, train one RNN for each — Second, develop domain — Third, unify the individual
IMT problem, demonstrating randomisations to overcome the solutions by training a single
observability of individual IMT sim-to-real gap. RNN on all observable IMTPs.

problems in-silico.

4@ FUSION (2022) @ Sensors L. (2023) @  TMLR(2024)
S. Bachhuber, D. Weber, I. Weygers, and T. Seel, “RNN- S. Bachhuber, D. Lehmann, E. Dorschky, A. D. Koelewijn, T. S. Bachhuber, I. Weygers, D. Lehmann, M. Dombrowski, and T.
based Observability Analysis for Magnetometer-Free Sparse Seel, and I. Weygers, “Plug-and-Play Sparse Inertial Motion Seel, “Recurrent Inertial Graph-Based Estimator (RING): A Single
Inertial Motion Tracking,” 2022 International Conference on Tracking With Sim-to-Real Transfer,” IEEE Sensors Letters Pluripotent Inertial Motion Tracking Solution,” Transactions on
Information Fusion Machine Learning Research

RNN-based Observability Analysis for

Magnetometer-Free Sparse Inertial Motion Tracking Plug-and-Play Sparse Inertial Motion Tracking With Sim-to-Real Transfer Inertial Graph-Based Esti (RING):
elewijn' @, A Single Pluripotent Inertial Motion Tracking Solution
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Recurrent Inertial Graph-based Estimator
State Estimation with IMUs / Methods

— The Recurrent Inertial Graph-based Estimator (RING) enables a mapping from IMU data to orientations that
maintains global context while being parameter-invariant w.r.t. the graph of the tree.

m o Ly=_ N > 6’ < -:‘ﬂgi-$-

— View kinematic chain as undirected graph and define neural network recursively.

’ c(child)
A for every body .
77 . Connectivity Graph
"‘/ ? 1. label bodies from 1 to N
2. store body index of
p(parent) parent body in array

Alil =p

19. Mérz 2025 20
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Architecture of RING EAU

State Estimation with IMUs / Methods

— RING is an RNN that maps IMU- and joint axes data, and sampling rates to relative orientations. Dimensions
) . T. #1i t
Y = ring, (X, A) o s
(unrolled in time) N.. # bodies
/RING \ F.. # features
Y,

\_

XERTXN:(F )‘Z?
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Architecture of RING EAU

State Estimation with IMUs / Methods

— Internally, it uses an RNN-like inner cell 'RINGCell" that updates the hidden state. Dimensions

T.. # timesteps

N.. # bodies
RING F.. # features

ét = ringCell (ft_ly Xt7 A)

/( RINGCell f \ H.. hidden dim of GRU
§i1 - ~ St R
RINGCeliState | [ N /\

&1 deald
il
£

£, € RV A ?
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Architecture of RING

State Estimation with IMUs / Methods

— First, each node in the graph computes a message based on its last hidden state.

fH:RH%RM MtERNXM
RING
¢ / RINGCell
t-1 =
RINGCellState f( €t—1 f9 \
§i1 gétl[c] (Messagel i<
wali] |
&1l €t_1 _(:._> E
g 0

NS

Dynamic Motion State Estimation and Control via RNNs and Sim-to-Real Transfer | Simon Bachhuber
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Dimensions

T.. # timesteps

N.. # bodies

F.. # features

H.. hidden dim of GRU
M.. message dim

L R el
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Architecture of RING

State Estimation with IMUs / Methods

— Second, messages are passed along the edges of the graph and an auxillary input computed.

X € RVX(2M+F)

\

RING
RINGCell
i1 y £, &t
RINGCeliState | [ £, o M, . I

=

£t 1§ &ale
t-1[1]
§i1lp]

AL

—»|Concatenatef——>

0+Z M[¢] E
> $ _>§~
# M, [p] Xt

base/00O 0

ﬁ
_/

/

X X[
X [i]
X¢[p]
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Dimensions

T.. # timesteps

N.. # bodies
F.. # features

H.. hidden dim of GRU
M.. message dim

RINGCellParams

O~

=AU
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Architecture of RING EAU

State Estimation with IMUs / Methods

— Third, hidden state is updated. &,[i] = go (€112 X[i]) Dimensions

go RZH % R2M+F SN RZH

T.. # timesteps

N.. # bodies
RING F.. # features

/ RINGCell \ H.. hidden dim of GRU
€t—1 vy €t—1 TN ft
[

> M.. message dim
RINGCellState € 41 fg M, 5{ \ ol
5 t-1 g €:1lc] Concatenate . >(StackedGRUCell gt
-114]
A rFrm e, -

\ base/OOO
A ? X¢ g;(t[l[]c] Y, ; i [ R '
i < [t g |w '
tp] P :
IS Al "
|

o st-? ﬂ? #iiza“t? e Yi| i inccavmam
-0 X [i|p——>| [PO| O |
K @>eM; .00 X, O /[/ Ei O—{Messag

i i ::

(I

|

|

|
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Architecture of RING EAU

State Estimation with IMUs / Methods

— Fourth, unit quaternions are computed. Dimensions
o H 4 ] = Y[i] T.. # timesteps
he : RY = R \/zjzls?[z’,jp N.. # bodies
RING F.. # features
/ RINGCell ¢ \‘ H.. hidden dim of GRU
§i1 vy & 2 > M.. message dim
RINGCellState ! ‘3 fo = \ ge ) h
ol M, X, C 0
f t-1 fﬁ &41c] Concatenate _V(StackedGRUCell ¢t @uaternionMLla
] , = o e e
wil [[| S1d-amrg ,‘1:2 M ¢ |Ydl| | MRiGeairanm :
O O ! |
& —@O> e M, [p] Xt i ) O J i i O @ :
i babe/OOO : i I :
: i O——= :
~ |
: I O—(StackedGRUCeID—PO:

A c X1 )}é t[l[]c] Y i & ____ l
i X, ] Y i O—{QuaternionMLP}»Q
Al !
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Training of RING in Simulation
State Estimation with IMUs / Methods

=AU

— Combine domain randomizations with RING architecture to train a single non-restrictive, plug-and-play IMT solution.

BeginniAdtef Training it
Simulator
After Training

Dynamic Motion State Estimation and Control via RNNs and Sim-to-Real Transfer | Simon Bachhuber 19. Méarz 2025 27
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Results
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Live Demonstration
State Estimation with IMUs / Results

I

FAU

DEMO
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Five-Segment Mechanical Kinematic Chain
State Estimation with IMUs / Results

— High-precision validation with optical motion capture and in a controlled environment.

Joints ngld and

\ nonrlgld IMUs

Foam causes motion artifacts / ¥ calibr. Naeg / X f S
ree - -

Challenges

/ K sparse \R

Smaller kinematic chains |

Various types of motions
>

19. Mérz 2025 30
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Real-world Kinematic Chain Tracking
State Estimation with IMUs / Results

=AU

Exciting Motion mag.-free (¥ sparse

4@ Sensors L. (2023)

— Using three-segment kinematic chain, we show:
— Accurate tracking

— Fast initial convergence

— Long-term stability

— Ablation Study

MAE [deg]: 2.47

l

— A
%" " RMSE [deg]: 3.33
T L0 MAE [deg] = 50
=, [0 5 /0.9 / 1.0 - quantile of joint 1] i@
e e P = INE
220 2.5 3.0 <
€3 + {
X  736+-270 = E
I 2 —50
S
— — — ° !
3.25+-029 ° 5 P
g o .= —100 MAE [deg]: 3.05 - ! !
.2 MAE [deg] = RMSE [deg]: 3.88 02 5 10 15 20
éo 0 0.5 /0.9 / 1.0 - quantile of joint 2 (I) Elj llO 1'5 20
4 .
= . | | | 3 time [s]
0 2 > . 10 15 20 truth joint 1 truth joint 2
time [s] == == prediction joint 1 prediction joint 2
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@ TMLR (2024)| [49* BMS (2024)

Broadly-Applicable Real-World Solution

State Estimation with IMUs / Results

— Tracking of triple-hinge-joint kinematic chain with two magnetometer-free IMUs.

IMT Problem t=0s t—40s t—=50s

mag.-free
sparse

MAE: 7.78°

— Tracking of double-hinge-joint kinematic chain with unknown joint axes with two foam-attached, mag.-free IMUs.

P e IMT Problem
sparse

calib.

nonrigid

MAE: 8.10° MAE: 5.22°
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Broadly-Applicable Real-World Solution

State Estimation with IMUs / Results

=AU

@ TMLR (2024)| [49* BMS (2024)

— Previous methods are problem-specific and Not Applicable (") to many IMTPs, RING accurately solves all problems.

w: mag.-free Qealibr. sparse nonrigidbﬁ sparse sparse
- - nonrigid
| e g \e “5 v
(2N pu.re % = L ®<f A iR oA
W & o HE A5 et 2R e
IMT Problems U 2§ N A 3 RN S gq( % 3 X
l Methods
(1) 2.06 £ 1.03 >(5)
(2) 2.25 £ 0.81 >(5) >(5) >(5)
(3) 2.09 + 0.87 >(5) >(5) >(5)
(4) 2.56 & 0.93 >(5) >(5) >(5)
(5) 1.61 £1.04 — 19.3 4+ 8.02 920+ 231 2494176
(5)+(6) 4 3.32 + 2.12 4 7.00 £ 1.57
(5)+(7) 4 4.15 £ 2.05 1 8.00 £ 2.78
(5)+(6) 4 - 3.18 4 2.05 4 8.50 + 2.60
(5)-+(7) 4 — 4.06 + 2.23 4 7.90 & 2.48
) 5.60 + 2.35
[RING 2.13 +£0.91 3.52 4+ 1.00 3.92 +£1.40 4.144+£0.53 7.594+2.85 556+2.33 537+£0.71 6.78 £1.41 8.10+ 1.19 |

Methods: Weber et al. (2021)(1), Madgwick (2010)(2), Mahony et al. (2008)(3), Seel & Ruppin (2017)(4), Laidig & Seel (2023)(5), Laidig et al. (2017)(6),

Lehmann et al. (2020)(7),0lsson et al. (2020)(8), Bachhuber et al. (2023)(9)

Dynamic Motion State Estimation and Control via RNNs and Sim-to-Real Transfer | Simon Bachhuber
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Human Inertial Motion Tracking
State Estimation with IMUs / Results

AU

— Because of its generalization capabilities, RING can be directly used for plug-and-play human IMT as well.

Plug-and-Play Knee Tracking

import imt

solver = imt.Solver(graph=[-1, 0], Ts=0.01, body_names=["thigh", "shank"])
imu_data = {

"thigh": dict(acc=accl, gyr=gyrl),
"shank": dict(acc=acc2, gyr=gyr2) %
}

quaternions, _ = solver.step(imu_data)
. . ython o~
github.com/simon- Package both orientations and geometry are
GitHub bachhuber/imt ’ Index estimated from IMU data

Dynamic Motion State Estimation and Control via RNNs and Sim-to-Real Transfer | Simon Bachhuber 19. Mérz 2025 34



Human Inertial Motion Tracking
State Estimation with IMUs / Results
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— Overall, RING enables non-restrictive, plug-and-play IMT in a broad range of applications.

indoors and
Knee outdoors application

different joints

DOFs can be unknown

can be used with or without
Sho  joint axes information

supports sparse
% plug-and-play sensor setups
different motion patterns

different # IMUs
can compute

orientations, joint

no calibration of
angles, geometry

IMUs required

Dynamic Motion State Estimation and Control via RNNs and Sim-to-Real Transfer | Simon Bachhuber
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Motion Control with
Neural ODEs

Dynamic Motion State Estimation and Control via RNNs and Sim-to-Real Transfer | Simon Bachhuber
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Reference Tracking in Unknown Nonlinear Dynamics
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Motion Control with Neural ODEs

____________________________________________________

— reference tracking in systems with unknown nonlinear dynamics /~ Applications FES-induced Cycling ‘

controller

electrical stimulator

System Output y(¢)

¢ System Input u(t)
] Reference p*(t)

___________________________________________________

— the current state of the art does not address the four challenges simultaneously

allows for non- Reinforcement Learning no model required
repetitive — &
P . Partially Observable Markov x
motions Decision Processes e
Challenges for Non-restrictive,

Plug-and-Play Motion Control

Optimal Control

- - no state information
data-efficient lterative Learning Control required
1

Dynamic Motion State Estimation and Control via RNNs and Sim-to-Real Transfer | Simon Bachhuber 19. Mérz 2025 37
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Method Overview Reference Tracking
Motion Control with Neural ODEs
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— Propose Automatic Neural ODE — Use ANODEC to create a
Control (ANODEC), a data- pneumatic soft actuator that
efficient learning control learns to perform agile motions
s 7 e no model required me.thoclj, apd e.xtensllve from only 30 seconds of IO data.
repetitive motions validation in simulation.
A
— |®@ANODEC| | 4@ Control Sys. (2023) @ IROS (2024)
data-efficient no state information
required S. Bachhuber, |I. Weygers, and T. Seel, “Neural ODEs for S. Bachhuber, A. Pawluchin, A. Pal, I. Boblan, and T. Seel, “A Soft
Data-Driven Automatic Self-Design of Finite-Time Output Robotic System Automatically Learns Precise Agile Motions
Feedback Control for Unknown Nonlinear Dynamics,” IEEE Without Model Information,” in 2024 IEEE/RSJ International
l Control Systems Letters, vol. 7, pp. 3048-3053, 2023 Conference on Intelligent Robots and Systems (IROS), 2024
‘EEEWMW,NEWEHM N M@; IECESES A Soft Robotic System Autol
github.com/simon- Se’}‘f%:lsli&DSSFfiﬁirtE?ii;ggﬁtmuég?ggck Wit
Control for Unknown Nonlinear Dynamics
GitHub Pachhuber/chain_control

Dynamic Motion State Estimation and Control via RNNs and Sim-to-Real Transfer | Simon Bachhuber 19. Mérz 2025 38



Parallels to Inertial Motion Tracking

Motion Control with Neural ODEs

State Estimation with IMUs

RING

\ 4

Simulator —_—
Inference

—Random Motions

« Objective: Learn filter
e Simulator: Model-based

« Motions: Random, exciting motions that are being
simulated

« Domain Randomizations: Randomize the properties
of the model and the virtual sensors

Dynamic Motion State Estimation and Control via RNNs and Sim-to-Real Transfer | Simon Bachhuber
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Motion Control with Neural ODEs

Random References

ANODEC "™ e

Controller | f i

Model from Training N !
IO data ; | Inference «—

Objective: Learn feedback controller
Simulator: Data-driven

Motions: Random step functions; references that the
controller tries to realise

Domain Randomizations: Randomize by transforming
the 10 behaviour of the model

19. Mérz 2025 39



Validation in Simulation and Experiment EAU

Motion Control with Neural ODEs

— Extensive validation of ANODEC on two simulated systems and a pneumatic soft actuator in two configurations.

@ Control Sys. (2023) %4 ANODEC @ . g [@ROS (2024)
[ plug-and-play ' N @
—— simulated double simulated Ackermann real-world pneumatic soft
pendulum dynamics steering dynamics actuator with and without load
outperforms two common baselines outperforms manually-tuned PID
after two minutes of interaction time after 30 seconds of interaction time

Reference: 5th order spline 1x speed
reference

Reference ANODEC

Position \
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Viability of RNNs and Sim-to-Real Transfer

Summary and Conclusion

L

FAU

Core Research Question: How can the combination of RNNs and
Sim-to-Real Transfer contribute to the development of non-restrictive,
plug-and-play solutions for motion state estimation and solutions for
motion control?

_________________

Y1 7Y
, . =

_________________
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____________________________________
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Viability of RNNs and Sim-to-Real Transfer

Summary and Conclusion

Core Research Question: How can the combination of RNNs and
Sim-to-Real Transfer contribute to the development of non-restrictive,
plug-and-play solutions for motion state estimation and solutions for
motion control?

Motion State Estimation

T magnetom
~— cter-free

RNNs and Sim-to-Real-Transfer Motion Control

calibration

®

automatic - &

RING

sparse
" ¢ sensing
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reduces motion

artifacts ;
P 5

allows for non- no model required
repetitive motions

% ANODEC

no state information
data-efficient required
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Final Conclusion and Impact

Summary and Conclusion

=AU

— The combination of RNNs and Sim-to-Real Transfer has enabled novel solutions for motion state estimation as well
as for motion control. These solutions advance the state of the art by providing a more flexible approach that reduces
reliance on expert knowledge and lowers calibration and data collection overhead.

VR/AR diagnostics gait analysis assistive devices

o

A

-
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IMUs and Inertial Motion Tracking
State Estimation with IMUs

AU

L

— Inertial Measurement Units (IMUs, or inerital sensors) have become small and affordable.

- lightweight, wireless, and battery-powered

- 3D gyroscope (angular velocity)

- 3D accelerometer (gravity + change of velocity)

Apollo IMU (1969, ~0.5m) MEMS IMU (2019, ~icm) - 3D magnetometer (Earth’s magentic field + others)

— Inertial Motion Tracking (IMT) tracks human or robot motion using wearable IMUs. Typically, one IMU per segment.

IMUs IMT algorithms , O.rient.ations/
Visualised Pose

diagnostics cerebral
palsy in infants
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Method Overview Inertial Motion Tracking
Paper (2022) Observability Analysis
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— First, train one BRNN for each — Second, develop domain — Third, unify the individual
IMT problem, demonstrating randomisations to overcome the solutions by training a single
observability of individual IMT sim-to-real gap; evaluate the RNN on all observable IMTPs.
problems in-silico. trained RNN on real-world data.
Iﬁ Bachhuber et al. 2022 Iﬁ Bachhuber et al. 2023 Ig Bachhuber et al. 2024
S. Bachhuber, D. Weber, I. Weygers, and T. Seel, “RNN- S. Bachhuber, D. Lehmann, E. Dorschky, A. D. Koelewijn, T. S. Bachhuber, I. Weygers, D. Lehmann, M. Dombrowski, and T.
based Observability Analysis for Magnetometer-Free Sparse Seel, and I. Weygers, “Plug-and-Play Sparse Inertial Motion Seel, “Recurrent Inertial Graph-Based Estimator (RING): A Single
Inertial Motion Tracking,” 2022 International Conference on Tracking With Sim-to-Real Transfer,” IEEE Sensors Letters Pluripotent Inertial Motion Tracking Solution,” Transactions on
Information Fusion Machine Learning Research

RNN-based Observability Analysis for
Magnetometer-Free Sparse Inertial Motion Tracking Plug-and-Play Sparse Inertial Motion Tracking With Sim-to-Real Transfer
g
elewin! ©,

Inertial Graph-Based Esti (RING):
A Single Pluripotent Inertial Motion Tracking Solution
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Simulated IMT Problem
Paper (2022) Observability Analysis
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— Consider a single IMT problem: magnetometer-free, sparse three-segment kinematic chain tracking. MT Proby
ropiem

Y, = (w1 (8)T, pa(t T ps(t Filtering Task Sparse 3-Segment

3 Kinematic Chain
2. s Estimate state ; € H \£,
g %w 15 T
TL, from measurements 29 '
3
T = ( Lq" (1), $?a"(t), 5ia Y10 € R¥*12 a8

— Simulate randomly-exciting motion; compute virtual IMU and groundtruth pose data.

=» random position er1(t) Ww_

R - y : n ! , 1 simulated acc. & gyr.

+ . —
=> random global orientation Sl(t)q —_— ] WN\% Yl F o Training
& : BB B 5 s A8 A ‘ I Data

- + g o A J VAN et e
= random joint angles 1 (%), p2(t) = Hel L \

seed

'''''''''
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RNN-based Observer
Paper (2022) Observability Analysis

M

FAU

— Train RNN-based Observer (RNNO) that maps timeseries of inertial data to rotational state.

Training
Data

— Minimize the squared angle error using truncated backpropagation through time.

Numerically-Stable Inclination Loss

. . a3 + gy + a2 ;. _ 2
£ a0~ £ 0 e £ 22t V8 ) = LP k)
; o P (@ = (£(ia.0,0,0.M@[0,0,-1") 0 q

arctan instead of typical arccos for better numerical stability
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Observability Analysis EAU

Paper (2022) Observability Analysis

— Increase amounts of training data and network size to assess observabiliy.

Data from observable IMT system Data from non-observable IMT system

£>I<\ L:*\

7z

more training & bigger network more training & bigger network

Argument 1: If a system is non-observable, then RNNO cannot converge to low error, even if the amount of training data is
increased, even if the parameter count of the RNN is increased, and even if the noise and bias levels are reduced.

Argument 2: If an RNNO converges to a small residual error, then observability is proven by example. The error should
exhibit some dependence on the RNN's parameter count, the amount of training data, and the noise and bias levels.
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Observabiliy Analysis
Paper (2022) Observability Analysis
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— Observabiliy of magnetometer-free, sparse three-segment KC depends on joint axes directions.

L|deg] 60 -

increase RNN'‘s
parameter count 40 -

A A‘Al

K JL 20_

I
1500

| | I‘ O | | | I
0 500 1000 1500 0 500 1000 1500

Number of Training Steps Number of Training Steps
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Automatic Neural ODE Control
Motion Control with Neural ODEs
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— ANODEC optimizes controller parameters by simulating closed-loop dynamics with random reference motions.

Dynamic Motion State Estimation and Control via RNNs and Sim-to-Real Transfer | Simon Bachhuber

\ 4

Simulator

—Random Motions

i

n

>

Inference

-

e

_____________

19. Mérz 2025 53



Automatic Neural ODE Control
Motion Control with Neural ODEs

=AU

— ANODEC optimizes controller parameters by simulating closed-loop dynamics with random reference motions.

Dynamic Motion State Estimation and Control via RNNs and Sim-to-Real Transfer | Simon Bachhuber
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Automatic Neural ODE Control EAU

Motion Control with Neural ODEs

— ANODEC optimizes controller parameters by simulating closed-loop dynamics with random reference motions.

— First, learn Neual ODE Model from input-output data

I £,

[

\ 1
> Simulator % > 1 |

|

1

|

\

v
y

IO data Model 7y Inference

e

_____________

e e

A 4

Simulator %

Random Motions
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Automatic Neural ODE Control EAU

Motion Control with Neural ODEs

— ANODEC optimizes controller parameters by simulating closed-loop dynamics with random reference motions.
— First, learn Neual ODE Model from input-output data

— Second, learn Neural ODE Controller by forward simulation using random references

= Random References @
= l
|

_____________

Controller [—— 1|  A-»
. Training % {’ ¥
'~ 1Odata Model ] ' i
! closed loop again 4 Inference | S :
: Neural ODE ) /

A 4

Simulator %

Random Motions
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Addressing All Four Challenges

State Estimation with IMUs
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— We want a non-restrictive method that can tackle all four challenges.

mag.-free sparse calib. nonrigid

radius \\Q%\:ﬁ‘:w ‘ )
B (upper arm) B, (forearm) (&) 1

"‘ v / by

rellable outdoors allows for sparse reduces expert knowledge and robust to nonrigid attachment
and indoors sensor setups calibration & modelling efforts and reduces motion artifacts

— Such a method will be broadly applicable to diverse IMT problems:

Inertial Orientation Magnetometer-free Estimating Joint Sparse N-Segment Complex
Estimation Heading Correction Axes Directions Kinematic Chain Combinations

1 -\4 \1’ \l, jl -\il\
$0 ()Q} ‘t: :é “ 4‘&: -\1%\ 2\/ L:N

-~ ﬂ i 2q ‘$: 3q(¥
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Zero-Shot Transfer
State Estimation with IMUs / Methods
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Tl

— Train RNN in simulation; after training RNN is a real-world IMT filter

— Overcome sim-to-real gap with extensive domain randomizations

‘r Training In ” Application
i; simulation in reality

Training I
Simulator Inference
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Generalising to Multiple IMT Problems
State Estimation with IMUs / Methods
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— How can we train a single NN with a fixed set of parameters despite different input/output shapes?

Inertial Orientation
Estimation

-\
LY

b

~—r

Magnetometer-free
Heading Correction

Different IMT
Problems
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