

Dynamic Motion State Estimation and Control via RNNs and Sim-to-Real Transfer

Simon Bachhuber, Promotionsvortrag / Defense Presentation, Department AIBE, FAU Erlangen-Nürnberg Erlangen, 18.03.2025

Dynamic Motion Surrounds Us Everywhere

Introduction

- Fundamentally, there are two tasks that involve dynamic motions: motion state estimation and motion control.

Introduction

- Motion state estimation and motion control are central for various applications.

3

Sensors and Actuators

Introduction

- Motion state estimation and motion control are central for various applications.

Experts are required to identify the problem and select & calibrate the suitable methods.

- These applications require a suitable set of **sensors and actuators**.

Non-Restrictive, Plug-and-Play Solution

Introduction

- Typically, each application requires a tailored solution; we want **plug-and-play, non-restrictive** methods.

- Model-based approaches do not scale and generalize \rightarrow RNNs that learn to identify the problem and calibrate.

- Training the RNN in **simulation** allows for thousands (or millions) of training datapoints.

Core Research Question: How can the combination of RNNs and Sim-to-Real Transfer contribute to the development of non-restrictive, plug-and-play solutions for motion state estimation and solutions for motion control?

Outline

- 1 Introduction
- 2 State Estimation with IMUs
 - 2.1 Introduction and Challenges in Inertial Motion Tracking
 - 2.2 Methods
 - 2.3 Results
- <u>3 Motion Control with Neural ODEs</u>
 - 3.1 Summary and Parallels to Inertial Motion Tracking
- 4 Summary and Conclusion

State Estimation with IMUs

- 1 Introduction
- 2 State Estimation with IMUs
 - 2.1 Introduction and Challenges in Inertial Motion Tracking
 - 2.2 Methods
 - 2.3 Results
- 3 Motion Control with Neural ODEs
 - 3.1 Summary and Parallels to Inertial Motion Tracking
- 4 Summary and Conclusion

IMUs and Inertial Motion Tracking

State Estimation with IMUs

- Inertial Measurement Units (IMUs, or inerital sensors) have become small and affordable.

- lightweight, wireless, and battery-powered
- 3D gyroscope (angular velocity)
- 3D accelerometer (gravity + change of velocity)
- 3D magnetometer (Earth's magentic field + others)
- Inertial Motion Tracking (IMT) tracks human or robot motion using wearable IMUs. Typically, one IMU per segment.

8

State Estimation with IMUs

In many real-world applications, IMT algorithms are faced with several challenges. —

Adopted from [Solin et al. 2018]

Earth field

9

State Estimation with IMUs

- In many real-world applications, IMT algorithms are faced with several challenges.

State Estimation with IMUs

- In many real-world applications, IMT algorithms are faced with several challenges.

State Estimation with IMUs

1

In many real-world applications, IMT algorithms are faced with several challenges. —

Addressing All Four Challenges

State Estimation with IMUs

- We want a non-restrictive method that can tackle all four **challenges**.

and indoors

sparse

sensor setups

reduces expert knowledge and calibration & modelling efforts

robust to nonrigid attachment and reduces motion artifacts

State of the Art

State Estimation with IMUs

- The current state of the art addresses at most two challenges simultaneously.

- Goal: Non-restrictive, plug-and-play solution for IMT that tackles all four challenges.

Methods

- 1 Introduction
- 2 State Estimation with IMUs
 - 2.1 Introduction and Challenges in Inertial Motion Tracking
 - 2.2 Methods
 - 2.3 Results
- 3 Motion Control with Neural ODEs
 - 3.1 Summary and Parallels to Inertial Motion Tracking
- 4 Summary and Conclusion

Methods Overview Inertial Motion Tracking

State Estimation with IMUs / Methods

 First, train one RNN for each IMT problem, demonstrating observability of individual IMT problems in-silico.

S. Bachhuber, D. Weber, I. Weygers, and T. Seel, "RNNbased Observability Analysis for Magnetometer-Free Sparse Inertial Motion Tracking," 2022 International Conference on Information Fusion

Second, develop domain randomisations to overcome the sim-to-real gap.

Sensors L. (2023)

S. Bachhuber, D. Lehmann, E. Dorschky, A. D. Koelewijn, T. Seel, and I. Weygers, "Plug-and-Play Sparse Inertial Motion Tracking With Sim-to-Real Transfer," IEEE Sensors Letters

Third, unify the individual solutions by training a single RNN on all observable IMTPs.

S. Bachhuber, I. Weygers, D. Lehmann, M. Dombrowski, and T. Seel, "Recurrent Inertial Graph-Based Estimator (RING): A Single Pluripotent Inertial Motion Tracking Solution," Transactions on Machine Learning Research

Recurrent mertial Graph-Dased E	stimator (RING):
A Single Pluripotent Inertial Mot	on Tracking Solution
Simon Bachhuber Department of Artificial Intelligence in Bismedical Engineering Priotrich-Mexander-Universität Erisngen-Nürnberg	simon, bachhaler Ofau, d
Ive Weygers Department of Artificial Intelligence in Biomedical Engineering Friedrich-Mexander-Universität Erlangen-Nürnberg	ice.urygers@fau.d
Dustin Lehmann Centrol Systems Group Technical University Berlin	dustin.lehmanw@tu-berlin.d
Mischa Dombrowski Department of Artificial Intelligence in Biomodical Engineering Friedrich-Alexander-Universität Erlangen-Nirnberg	mischa. dombrouski@fau.d
Thomas Seel Institute of Mechatronics Systems Leibniz Universität Hannaver	$thomas.seel \\ \theta imes.uni-hanmover.d$
Reviewed on OpenReview: https://epenreview.net/form	r? sd=h2C3+km0x8
Abstract	
This maps introduces a cost ML-based motion for fundamental himsge the way the introducing is nor (Becurrent Intrila Graph-Based Estimator), prove physica-d-physic MI solution that, in contrast to em- need for expect knowledge to identify, where, and that uses a determination of the solution of the solution referentiation. This arithmetic measurements and orientations. This arithmetic measurements and enginetism is the lummatic thain, and even generalize including the lummatic thain, and even generalized including the distinguistic enhancement of the superstantion of the solution of the superstantion of the superstantion.	Inerial Motion Teacking (IMT) that The proposed method, annuel KING for a pluripotent, problem-imprecific untional DRT solutions, diministrate the endometry of the problem strategies of the parameter science of the problem strategies of the metror science having recurrent neural in neurost-science messages to local dress a housed range of IMT problems, of tatheded sensors, or the number of to previously unsolved IMT problems, effect and appare sensing with unknown

Domain Randomizations

State Estimation with IMUs / Methods

Dynamic Motion State Estimation and Control via RNNs and Sim-to-Real Transfer | Simon Bachhuber

Generalising to Multiple IMT Problems

FAU

State Estimation with IMUs / Methods

- How can we train a single NN with a fixed set of parameters despite different input/output shapes?

Method Overview Inertial Motion Tracking

State Estimation with IMUs / Methods

 First, train one RNN for each IMT problem, demonstrating observability of individual IMT problems in-silico.

FUSION (2022)

based Observability Analysis for Magnetometer-Free Sparse

Inertial Motion Tracking," 2022 International Conference on

Information Fusion

S. Bachhuber, D. Weber, I. Weygers, and T. Seel, "RNN-

 Second, develop domain randomisations to overcome the sim-to-real gap.

Sensors L. (2023)

S. Bachhuber, D. Lehmann, E. Dorschky, A. D. Koelewijn, T. Seel, and I. Weygers, "Plug-and-Play Sparse Inertial Motion Tracking With Sim-to-Real Transfer," IEEE Sensors Letters

 Third, unify the individual solutions by training a single RNN on all observable IMTPs.

S. Bachhuber, I. Weygers, D. Lehmann, M. Dombrowski, and T. Seel, "Recurrent Inertial Graph-Based Estimator (RING): A Single Pluripotent Inertial Motion Tracking Solution," Transactions on Machine Learning Research

Recurrent Inertial Graph-Based Esti A Single Pluripotent Inertial Motion	mator (RING): n Tracking Solution		
Simon Bachhuber Department of Artificial Intelligence in Biomodical Engineering Priodrich-Mezander-Universität Erlangen-Nürnberg	simon, bachkaber Ofau, d		
Ive Weygers Department of Artificial Intelligence in Biomodical Engineering Priodrich-Mezander-Universität Erlangen-Närnberg	ice.wezgers@fau.d		
Dustin Lehmann Centrol Systems Group Technical University Berlin	dustin.lehmann@tu-berlin.d		
Mischa Dombrowski Department of Artificial Intelligence in Biomodical Engineering Priedrich-Mazander-Universität Erlangen-Närnberg	mischa, dombrouski@fau.d		
Thomas Seel Institute of Mechatronics Systems Leibniz Universität Hannsver	$thomas.seel \\0 imes.uni-hannover.d$		
Reviewed on OpenReview: https://openreview.net/forum?in	ir hacirkmini		
Abstract			
This paper introduces a word ML-based method for In the state of the state of the state of the state of the state (Based State of the state of the state of the state of the state physical state of the state of the state of the state of the state takes of for expect knowledge to identify, where, and para RIGN's physical state of the state of the state of the state takes of the state of the	rrial Motion Tracking (IMT) that he proposed method, anned RING a phraptotent, problem-unspecific ional IMT solutions, eliminates the unserterize the appropriate method, able sensured network architecture annector-sharing recurrent neural arcst-neighbour messages to local as a hoad range of IMT problems tached sensors, or the number of previously modewed BMT problems,		

Recurrent Inertial Graph-based Estimator

State Estimation with IMUs / Methods

 The Recurrent Inertial Graph-based Estimator (RING) enables a mapping from IMU data to orientations that maintains global context while being parameter-invariant w.r.t. the graph of the tree.

- View kinematic chain as undirected graph and define neural network recursively.

Connectivity Graph

1. label bodies from 1 to N 2. store body index of parent body in array $oldsymbol{\lambda}[i] = p$

Training of RING in Simulation

State Estimation with IMUs / Methods

- Combine domain randomizations with RING architecture to train a single non-restrictive, plug-and-play IMT solution.

Results

- 1 Introduction
- 2 State Estimation with IMUs
 - 2.1 Introduction and Challenges in Inertial Motion Tracking
 - 2.2 Methods
 - 2.3 Results
- 3 Motion Control with Neural ODEs
 - 3.1 Summary and Parallels to Inertial Motion Tracking
- 4 Summary and Conclusion

Live Demonstration

State Estimation with IMUs / Results

DEMO

Five-Segment Mechanical Kinematic Chain

FAU

State Estimation with IMUs / Results

- High-precision validation with optical motion capture and in a **controlled** environment.

Real-world Kinematic Chain Tracking

State Estimation with IMUs / Results

Broadly-Applicable Real-World Solution

TMLR (2024) 🕈 BMS (2024)

State Estimation with IMUs / Results

- Tracking of triple-hinge-joint kinematic chain with two magnetometer-free IMUs.

- Tracking of double-hinge-joint kinematic chain with unknown joint axes with two foam-attached, mag.-free IMUs.

Broadly-Applicable Real-World Solution

State Estimation with IMUs / Results

- Previous methods are problem-specific and Not Applicable (NA) to many IMTPs, RING accurately solves all problems.

	mag.	-free	Calibr.	✓ sparse	🔽 nonrigid		sparse		sparse
MT Problems			221q			A A A A A A A A A A A A A A A A A A A		² ¹ ² ² ² ² ⁴ ³ ⁴	
Methods									
(1)	2.06 ± 1.03	NA	NA	NA	\geq (5)	NA	NA	NA	NA
(2)	2.25 ± 0.81	$\geq(5)$	$\geq (5)$	NA	\geq (5)	NA	NA	NA	NA
(3)	2.09 ± 0.87	$\geq (5)$	$\geq (5)$	NA	$\geq (5)$	NA	NA	NA	NA
(4)	2.56 ± 0.93	$\geq (5)$	\geq (5)	NA	$\geq (5)$	NA	NA	NA	NA
(5)	1.61 ± 1.04	\rightarrow	19.3 ± 8.02	NA	9.20 ± 2.31	24.9 ± 17.6	NA	NA	NA
(5)+(6)	\uparrow	3.32 ± 2.12	NA	NA	\uparrow	7.00 ± 1.57	NA	NA	NA
(5)+(7)	\uparrow	4.15 ± 2.05	NA	NA	\uparrow	8.00 ± 2.78	NA	NA	NA
(5)+(6)+(8)	\uparrow	\rightarrow	3.18 ± 2.05	NA	\uparrow	8.50 ± 2.60	NA	NA	NA
(5)+(7)+(8)	\uparrow	\rightarrow	4.06 ± 2.23	NA	\uparrow	7.90 ± 2.48	NA	NA	NA
(9)	NA	NA	NA	5.60 ± 2.35	NA	NA	NA	NA	NA
RING	2.13 ± 0.91	3.52 ± 1.00	3.92 ± 1.40	4.14 ± 0.53	7.59 ± 2.85	5.56 ± 2.33	5.37 ± 0.71	6.78 ± 1.41	8.10 ± 1.19

Methods: Weber et al. (2021)(1), Madgwick (2010)(2), Mahony et al. (2008)(3), Seel & Ruppin (2017)(4), Laidig & Seel (2023)(5), Laidig et al. (2017)(6), Lehmann et al. (2020)(7), Olsson et al. (2020)(8), Bachhuber et al. (2023)(9)

Dynamic Motion State Estimation and Control via RNNs and Sim-to-Real Transfer | Simon Bachhuber

Human Inertial Motion Tracking

State Estimation with IMUs / Results

- Because of its generalization capabilities, RING can be directly used for plug-and-play human IMT as well.

Plug-and-Play Knee Tracking

Human Inertial Motion Tracking

State Estimation with IMUs / Results

- Overall, RING enables non-restrictive, plug-and-play IMT in a broad range of applications.

indoors and outdoors application

different joints

DOFs can be unknown can be used with or without joint axes information

supports sparse plug-and-play sensor setups

different motion patterns

different # IMUs no calibration of IMUs required angles,

Motion Control with Neural ODEs

- 1 Introduction
- 2 State Estimation with IMUs
 - 2.1 Introduction and Challenges in Inertial Motion Tracking
 - 2.2 Methods
 - 2.3 Results
- 3 Motion Control with Neural ODEs
 - 3.1 Summary and Parallels to Inertial Motion Tracking
- 4 Summary and Conclusion

Reference Tracking in Unknown Nonlinear Dynamics

Motion Control with Neural ODEs

- the current state of the art does not address the four challenges simultaneously

Method Overview Reference Tracking

Motion Control with Neural ODEs

GitHub github.com/simonbachhuber/chain_control Propose Automatic Neural ODE Control (ANODEC), a dataefficient learning control method, and extensive validation in simulation.

Control Sys. (2023)

S. Bachhuber, I. Weygers, and T. Seel, "Neural ODEs for Data-Driven Automatic Self-Design of Finite-Time Output Feedback Control for Unknown Nonlinear Dynamics," IEEE Control Systems Letters, vol. 7, pp. 3048–3053, 2023

 Use ANODEC to create a pneumatic soft actuator that learns to perform agile motions from only 30 seconds of IO data.

S. Bachhuber, A. Pawluchin, A. Pal, I. Boblan, and T. Seel, "A Soft Robotic System Automatically Learns Precise Agile Motions Without Model Information," in 2024 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2024

Parallels to Inertial Motion Tracking

Motion Control with Neural ODEs

State Estimation with IMUs

- Objective: Learn filter
- <u>Simulator</u>: Model-based
- <u>Motions</u>: Random, exciting motions that are being simulated
- <u>Domain Randomizations</u>: Randomize the properties of the model and the virtual sensors

- <u>Objective</u>: Learn feedback controller
- Simulator: Data-driven
- <u>Motions</u>: Random step functions; references that the controller tries to realise
- Domain Randomizations: Randomize by transforming the IO behaviour of the model

Motion Control with Neural ODEs

Dynamic Motion State Estimation and Control via RNNs and Sim-to-Real Transfer | Simon Bachhuber

Validation in Simulation and Experiment

Motion Control with Neural ODEs

- Extensive validation of ANODEC on two simulated systems and a pneumatic soft actuator in two configurations.

Summary and Conclusion

- 1 Introduction
- 2 State Estimation with IMUs
 - 2.1 Introduction and Challenges in Inertial Motion Tracking
 - 2.2 Methods
 - 2.3 Results
- 3 Motion Control with Neural ODEs
 - 3.1 Summary and Parallels to Inertial Motion Tracking
 - 4 Summary and Conclusion

Viability of RNNs and Sim-to-Real Transfer

Summary and Conclusion

Core Research Question: How can the combination of RNNs and Sim-to-Real Transfer contribute to the development of non-restrictive, plug-and-play solutions for motion state estimation and solutions for motion control?

Viability of RNNs and Sim-to-Real Transfer

Summary and Conclusion

Core Research Question: How can the combination of RNNs and Sim-to-Real Transfer contribute to the development of non-restrictive, plug-and-play solutions for motion state estimation and solutions for motion control?

Final Conclusion and Impact

Fau

Summary and Conclusion

 The combination of RNNs and Sim-to-Real Transfer has enabled novel solutions for motion state estimation as well as for motion control. These solutions advance the state of the art by providing a more flexible approach that reduces reliance on expert knowledge and lowers calibration and data collection overhead.

diagnostics

gait analysis

assistive devices

Publications in 1st and 2nd Authorship

Summary and Conclusion

S. Bachhuber, I. Weygers, and T. Seel, "Dispelling Four Challenges in Inertial Motion Tracking with One Recurrent Inertial Graph-based Estimator," 2024 IFAC Symposium on Biological and Medical Systems, vol. 58, no. 24, pp. 117-122, 2024

BMS (2024)

S. Bachhuber, I. Weygers, D. Lehmann, M. Dombrowski, and T. Seel, "Recurrent Inertial Graph-Based Estimator: A Single Pluripotent IMT Solution," Transactions on Machine Learning Research, vol. 10, 2024

TMLR (2024)

S. Bachhuber, D. Lehmann, E. Dorschky, A. D. Koelewijn, T. Seel, and I. Weygers, "Plug-and-play sparse inertial motion tracking with sim-to-real transfer," IEEE Sensors Letters, vol. 7, no. 10, pp. 1–4, 2023

Sensors L. (2023)

S. Bachhuber, D. Weber, I. Weygers, and T. Seel, "RNN-based observability analysis for magnetometer-free sparse inertial motion tracking," in 2022 25th International Conference on Information Fusion (FUSION), 2022, pp. 1–8

S. Bachhuber, A. Pawluchin, A. Pal, I. Boblan, and T. Seel, "A Soft Robotic System Automatically Learns Precise Agile Motions Without Model Information," in 2024 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2024, pp. 11368–11373 **IROS** (2024)

M. Meindl, S. Bachhuber, and T. Seel, "Reference-Adapting Iterative Learning Control for Motion Optimization in Constrained Environments," in 2024 IEEE 63rd Conference on Decision and Control (CDC), 2024*

M. Meindl, S. Bachhuber, and T. Seel, "AI-MOLE: Autonomous iterative motion learning for unknown nonlinear dynamics with extensive experimental validation," Control Engineering Practice, vol. 145, p. 105879, 2024*

S. Bachhuber, I. Weygers, and T. Seel, "Neural ODEs for Data-Driven Automatic Self-Design of Finite-Time Output Feedback Control for Unknown Nonlinear Dynamics," IEEE Control Systems Letters, vol. 7, pp. 3048-3053, 2023

opensource software

tested and documented

github.com/simon-bachhuber/imt

github.com/simon-bachhuber/ring

GitHub github.com/simon-bachhuber/diodem

github.com/simon-bachhuber/chain control

imt-diodem

imt-imt

imt-ring

*not included in thesis

Thank you for your attention!

IMUs and Inertial Motion Tracking

State Estimation with IMUs

- Inertial Measurement Units (IMUs, or inerital sensors) have become small and affordable.

- lightweight, wireless, and battery-powered
- 3D gyroscope (angular velocity)
- 3D accelerometer (gravity + change of velocity)
- 3D magnetometer (Earth's magentic field + others)
- Inertial Motion Tracking (IMT) tracks human or robot motion using wearable IMUs. Typically, one IMU per segment.

- In many real-world applications, IMT algorithms are faced with several challenges.

diagnostics cerebral palsy in infants

drop foot detection

Method Overview Inertial Motion Tracking

Paper (2022) Observability Analysis

 First, train one RNN for each IMT problem, demonstrating observability of individual IMT problems in-silico.

Bachhuber et al. 2022

S. Bachhuber, D. Weber, I. Weygers, and T. Seel, "RNNbased Observability Analysis for Magnetometer-Free Sparse Inertial Motion Tracking," 2022 International Conference on Information Fusion

- Second, develop domain randomisations to overcome the sim-to-real gap; evaluate the trained RNN on real-world data.
- Third, unify the individual solutions by training a single RNN on all observable IMTPs.

Bachhuber et al. 2023

S. Bachhuber, D. Lehmann, E. Dorschky, A. D. Koelewijn, T. Seel, and I. Weygers, "Plug-and-Play Sparse Inertial Motion Tracking With Sim-to-Real Transfer," IEEE Sensors Letters

Bachhuber et al. 2024

S. Bachhuber, I. Weygers, D. Lehmann, M. Dombrowski, and T. Seel, "Recurrent Inertial Graph-Based Estimator (RING): A Single Pluripotent Inertial Motion Tracking Solution," Transactions on Machine Learning Research

Recurrent Inertial Graph-Based Estin A Single Pluripotent Inertial Motion	mator (RING): Tracking Solution		
Simon Bachhuber Department of Artificial Intelligence in Biomodical Engineering Prioritein-Meander-Universität Erkangen-Namberg	simon, bachhader Øfau.		
Ive Weygers Department of Artificial Intelligence in Bismedical Engineering Priodrich-Mexander-Universität Erlangen-Nürnberg	ive. weggers@fau.		
Dustin Lehmann Control Systems Group Technical University Berlin	dustin.lehmann@tu-berlin.		
Mischa Dombrowski Department of Artificial Intelligence in Biomodical Engineering Friedrich-Alexander-Universität Erlangen-Nämberg	mischa. dombrouski@fau.		
Thomas Seel Institute of Mechatronics Systems Leibniz Universität Hannover	$thomas.seel \\ 0 imes.an i-han mover.e$		
Reviewed on OpenReview: https://openreview.net/forun?ide	= h3C3rkm0zA		
Abstract			
This paper introduces a novel ML-based methods for the rank present disk damage the very label to be total disk of solid Ti (Rocurrent Inertial Graph-Based Estimator), provider, physion-14949 MIT oblicits that, in contrast to conventi- nced for expect Incodedge to identify, select, and pane IRMCS pringingency is enabled by a novel collimo-cap methods, which may local LMU measurements and ner- oristations. This architecture makels RING to address	rtial Motion Tracking (IMT) that as proposed method, named RINCO as plutipotent, problem-unspecific cond IMT solutions, diminates the meterize the appropriate method. able neural network architecture nameter-sharing recurrent neural arcst-neighbors messages to local as a broad range of IMT problems tached sensors, or the number of		

Simulated IMT Problem

Paper (2022) Observability Analysis

- Consider a single IMT problem: magnetometer-free, sparse three-segment kinematic chain tracking.

- Simulate randomly-exciting motion; compute virtual IMU and groundtruth pose data.

RNN-based Observer

- Train RNN-based Observer (RNNO) that maps timeseries of inertial data to rotational state.

Minimize the squared angle error using truncated backpropagation through time.

$$\mathcal{L}\left(\mathbf{q}_{t}, \hat{\mathbf{q}}_{t}\right) = \tilde{\mathcal{L}}\left(\mathbf{q}_{t}^{*} \otimes \hat{\mathbf{q}}_{t}\right)^{2} \text{ where } \tilde{\mathcal{L}}\left(\mathbf{q}_{err}\right) = 2 \underbrace{\arctan}_{\mathbf{q}_{w}} \left(\frac{\sqrt{\mathbf{q}_{x}^{2} + \mathbf{q}_{y}^{2} + \mathbf{q}_{z}^{2}}}{\mathbf{q}_{w}}\right)$$

arctan instead of typical arccos for better numerical stability

Numerically-Stable Inclination Loss $\tilde{\mathcal{L}}_{incl}(\mathbf{q}_{err}) = \underline{\tilde{\mathcal{L}}} \left(\mathcal{P}(\mathbf{q}_{err}) \right)^2$ $\mathcal{P}(\mathbf{q}) = \left(\underline{\tilde{\mathcal{L}}} \left([\mathbf{q}_w, 0, 0, \mathbf{q}_z]^{\mathsf{T}} \right) @ [0, 0, -1]^{\mathsf{T}} \right) \otimes \mathbf{q}$

Observability Analysis

Paper (2022) Observability Analysis

Increase amounts of training data and network size to assess observabiliy.

Argument 1: *If a system is non-observable, then RNNO cannot converge to low error*, even if the amount of training data is increased, even if the parameter count of the RNN is increased, and even if the noise and bias levels are reduced.

Argument 2: *If an RNNO converges to a small residual error, then observability is proven by example*. The error should exhibit some dependence on the RNN's parameter count, the amount of training data, and the noise and bias levels.

Observabiliy Analysis

Paper (2022) Observability Analysis

- Observabiliy of magnetometer-free, sparse three-segment KC depends on joint axes directions.

FAU

Motion Control with Neural ODEs

- ANODEC optimizes controller parameters by simulating closed-loop dynamics with random reference motions.

FAU

Motion Control with Neural ODEs

- ANODEC optimizes controller parameters by simulating closed-loop dynamics with random reference motions.

FAU

Motion Control with Neural ODEs

- ANODEC optimizes controller parameters by simulating closed-loop dynamics with random reference motions.
- First, learn Neual ODE Model from input-output data

Motion Control with Neural ODEs

- ANODEC optimizes controller parameters by simulating closed-loop dynamics with random reference motions.
- First, learn Neual ODE Model from input-output data 🄇 —
- Second, learn Neural ODE Controller by forward simulation using random references

Dynamic Motion State Estimation and Control via RNNs and Sim-to-Real Transfer | Simon Bachhuber

Addressing All Four Challenges

State Estimation with IMUs

- We want a non-restrictive method that can tackle all four **challenges**.

- Such a method will be broadly applicable to diverse **IMT problems**:

Zero-Shot Transfer

- Train RNN in simulation; after training RNN is a real-world IMT filter
- Overcome sim-to-real gap with extensive domain randomizations

Generalising to Multiple IMT Problems

FAU

State Estimation with IMUs / Methods

- How can we train a single NN with a fixed set of parameters despite different input/output shapes?

